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SUMMARY

A study is made of the radiation resistance of long cylindrical shells
in contact with an ideal compressible acoustic medium of infinite extent.
The goal of the study is the development of useful engineering results in
graphical form which are valid over a wide frequency range for broad types
of shell materials and for various acoustic media.

The problem is formulated mathematically in terms of two descriptive
differential equations: one for the cylindrical shell and the other for the
acoustic medium. The equation of motion for the shell which is excited by
a source in the interior is developed in terms of the radial displacement,
w, of the surface subject to the hypotheses that the shell, composed of iso-
tropic  elastic material, obeys thin shell equations of deformation. The
eéquation of motion of the acoustic medium is the well known wave equation.
The solution to these equations is obtained by imposition of a boundary
condition establishing velocity compatibility at the shell-fluid interface
and by the requirement that the results satisfy the radiation condition in
the limit at large distances from the surface of the shell. The solution
which is written in terms of the acoustic velocity potential is employed to
obtain the total power radiated and the mean-square surface velocity of the
surface of the shell. This information is used to calculate the radiation

resistance. For convenience and generality, the results are obtained in
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terms of dimensionless series that are numerically evaluated for realistic
ranges of the dimensionless parameters involved.

Although the problem is examined only in terms of axisymmetric and
lobar mode shapes, the results agree with experimental results in the 1it-
erature both in terms of the peak at the critiqal frequency and the asymptotic
approach to the radiation resistance of a flat plate of equal area at large
values of the dimensionless frequency parameter. The analytical results are
presented in a form amenable to utilization of a digital computer with the
actual numerical computation being carried out for both representative shell
materials and fluids. The numerical results are presented in terms of graphs

and tables to facilitate usefulness.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . « 4 « ¢ ¢ ¢ ¢ ¢ v s o o s & s o o s
LIST OF FIGURES . . . . . © & ¢ « v o v o v v v 0 s o o o =
1. INTRODUCTION . . . . & ¢ & v & o o o s o o o o o o o o o
2. GENERAL CONCEPT OF RADIATION RESISTANCE . . . . ,

2.1 Radiation Resistance . e e e
2.2 Applications of Radiation Res1stance e e e

3. REVIEW OF LITERATURE . . . . . . . . « « « « v « « ,
4, ANALYTICAL DEVELOPMENT .
4.1 Equations of Motion for the Cylindrical Shell , .,
4.1.1 Axisymmetric Mode Shapes . . . . . . . ,
4.1.2 TLobar Mode Shapes e .
4.2 The Wave Equation in the Acoustic Medium

4.3 Solution for Axisymmetric Mode Shapes .
4.4 Solution for Lobar Mode Shapes

5. NUMERICAL EVALUATION .

5.1 Numerical Evaluation for Axisymmetric Mode Shapes
5.2 Numerical Evaluation for Lobar Mode Shapes

6. DISCUSSION OF RESULTS

7. SUMMARY AND CONCLUSTIONS

8. LIST OF REFERENCES . . . . . . . . « . « o v o v o o 4y
9. LIST OF SYMBOLS . . . . . . + ¢ o o o v v o« o o o

10, APPENDICES . . . . . v ¢« v v v 4 e o o u v o 0 a0 o o

10.1 Response Analysis of a Randomly Excited Rigid
Piston in an Infinite Baffle . . . . . . .

10.1.1 Introduction . . .
10.1.2 Analytical Development . .
10.1.3 Discussion of Results ., . .,
10.1.4 Conclusions

Page

vii

.ooviii

12
18
18

23
24

26
. 29
. 45
61

61
73

80
82
85

88

88

88
89

97



TABLE OF CONTENTS (continued)

10.2 Radiation Condition Verification . . ., .
10.3 Computer Programs . . . .

10.3.1 Program to Compute Radiation
Resistance for Axisymmetric Mode
Shapes . . . . . . . . . . .

10.3.2 Program to Average Radiation
Resistance for Axisymmetric Mode
Shapes . . . . . . . . « . . .

10.3.3 Program to Compute Radiation
Resistance for Lobar Mode
Shapes . . . . . . . . . .,

vi

Page

.110
.113

<114

.115

.118



LIST OF TABLES

5.1 Physicél propert

Page
ies of typical shell materials and
fluids . . . . . . . . . ... D 13
5.2 Dimensionless radjation regsistance for wvarious
values of h/L . . B L
5.3 Dimensionlegs radiation resistance for various
shell materials in contact with air 71

vii



LIST OF FIGURES

Page
2.1 Schematic illustration of energy flow for vibrating
structure in contact with an acoustic medium , . . . . . . . 5
2.2 Mathematic model of single.degree.of-freedom system
with acoustic damping included . . . . . « . ¢« . . . . . . 7
4.1 The coordinate system and displacement components
at a point on an element of the cylindrical shell ., . . . . 20
4,2 Schematic of acoustic field area into which vibratory
energy is radiated by the cylinder . . . . . ., . . . . . . . 56
5.1 Dimensionless radiation resistance vs (%Eb -
)
5.2 Dimensionless radiation resistance vs (%E) P .Y
o
5.3 Dimensionless radiation resistance vs (%Ea e+ v s 4+ . . . . B8
0
5.4 Averaged dimensionless radiation resistance vs 6259 . ¢+ . 69
o
5.5 Dimensionless radiation resistance vs Cgi) for lgbar
mode shapes . . . . . . . . . . . . .o. O -
5,6 Dimensionless radiation resistance vs 6259 for lobar
mode shapes . . . . . . . . . . . . .o. B ¥/
10.1 Rigid piston in infinite baffle . . . . . . . . . .+ . . . . 98
10.2. Equivalent System . « . v « ¢ « « 4 4 & s « « 4 ¢ 4 4 4 . . . 98
10.3 Dimensiponless admittance vs dimensionless frequency . . . . . 99
10.4 Dimensionless admittance vs dimensionless frequency . . , . .100
10.5 Dimensionless admittance vs dimensionless frequency . . ., . .101
10.6 Dimensionless admittance vs dimensionless frequency . . . . .102
10.7 Dimensionless velocity vs lm e [ k|

viii



LIST OF FIGURES (continued)

10.8
10.9
10.10
10.11
10.12

10.13

Dimensionless’
Dimensionless
Dimensionless
Dimensionless
Dimensionless

Dimensionless

velocity
velacity
velocity
velocity
velocity

velocity

vs

v§

vs

ix

Page
. 104
. 105
.106
.107
.108

. 109



=

1. INTRODUCTION

A rigorouys study of the vibration of a structure in contact with a -
fluid requires the inclusion of the effects of the presence of the
fluid on the motion of the structure. Even in less rigorous analyses,
however, at least three situations require the consideration of
structure-fluid interaction.

The first situation is the case of large fluid density, In this
case the fluid is usually a liquid and the relative magnitude of fhe
forces due to the presence of the fluid as compared to the magnitude of
other forces acting on the structure preclude any meaningful analysis
when the structure-fluid interaction is neglected,

A second instance arises when it is desirable to be able to pre-
dict and control the amount of vibratory power transmitted to the fluid
by the structure. This 18 particularly important in mechanical design
where the fluid is air and the vibratory power 1s unwanted sound that
can adversely effect both men and sensitive equipment in the surround-
ing area.

The third situation occurs when a structure is excited by an
intense acoustic power level in the surrounding fluid., 1In this case,
which is essentially the inverse of the second case, the fluid is air
and the acoustic power spectral components occur predominantly in the
low-.gudible to sub-audible frequency ranges. The need to understand
the structure~-fluid interaction phenomenon in this case is also due tq
the desirability of reducing noise transmission as well as structural

vibration.



Radiation resistance is a parameter which is used to quantify the
structure-fluid interaction phenomena discussed briefly in the three
preceding paragraphs.. In the study reported herein, the radiation re-
sistance for unit elements of infinite cylindrical shells is developed.
Results are presented in the form of graphs for convenience as well as
conciseness, |

Chapter 4 provides a discussion of the development of the dif-
ferential equations of motion of the shell for the two cases congidered.
A brief development of the wave equation for the acoustic medium and
the boundary conditions at the shell-fluid interface and at large
distances from the shell surface are included. In the last twp sec-
tions of the chapter, ap analytical solution for the case of axi-
symmetric mode shapes of the cylinder is presented along with a
solution for the case of lobar mode shapes.

Chapter 5 presents the methods employed and results of numerical
evaluation of the analytical expressions obtained in Chapter 4. The
effects and relative importance of shell material properties and fluid
properties are discussed.

Chapter 6 contains an evaluation of the results and a eomparison
of the results with previous work.

Several appendices are included for a more detailed explanation
of one application of radiation resistance and procedures employed in
the main body of this report. The first appendix is actually a paper,
"Response Analysis of a Randomly Excited Rigid Piston in an Infinite
Baffle," presented by the author at the 76th Meeting of the Acoustical

Society of America and represents a detailed illustration of an



application of radiation resistance. The second appendix gives the
detailed verification that the analytical solutions emplcyed in this
work satisfy the radiation conditionﬂ The last appendix gives the
details of the computer programs utilized in the evaluation of the

analytical results,



2. GENERAL CONCEPT OF RADIATION RESISTANCE

An analysis of acoustically excited.vibration of structures leads
to a consideration of the coupling between the sound pressure waves and
the induced vibration of the structure. 1In a similar fashion, the
control of the intensity of sound emitted from a vibrating structure
requires a consideration of the coupling between the vibration of the
structure and the induced pressure variations in the surrounding air.

This coupling depends on the radiation resistance and can be
characterized by a quantity u, the resistance ratio, which is a measure
of the amount of power radiated from the vibrating body as compared to
the total power dissipated both by radiation tp the surrounding fluid
and by mechanical losses within the structure. Figure 2.1 illustrates
the meaning of the resistance ratio with reference to the power dissi-
pation that occurs in the steady-state vibration of a structure. Since
Wi is the input power, uwi is the energy dissipated to the surrounding
fluid, and (l_u)wi is the energy dissipated within the structure. In

other words, from the definition

bW (2.1

where Wr is the radiated power and LR is the radiated power plus the

power dissipated in the structure.

2.1 Radiation Resistance
A more useful form of equation (2.1) can be developed in terms of
the radjation resistance, Rrad’ which is the central topic of this

study. For generality without complexity, consider the
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single-degree-of-freedom system shown in Figure 2.2 where the acoustic

damping effects are represented in terms of the radiation resistance,

Rrad’ The differential equation of motjion for this system is

dzx + (Rm + Rrad) dx + §4<= Fo eiwt 2.2)

2T @ TR W ’ :
or

2 F .

d™'x dx S __ o iuwt

"d—‘t—z"' ng)n T +ﬁx ‘—Te s (2.3)
where

2bw = (R4t Rm)/M . (2.4)

The solution of equation (2.3) is a complex gquantity the real part of

which will hereafter be interpreted as being physically significant:

the solution is of the form x(t) = Aeiwt where A is evalpated as,
P /M
A= 3 (2.5)
S/M + iZanw -w
or using equation (2.,4)
. Fo iwt
—lwe
x(t) = . (2.6)

s . S,
(Rm + Rrad) + i(Mw - E?

But R =-(Rm + Rrad) is the total resistance, and X = (M® -~ E is the

mechanical reactance; sp, the impedance can be written as

Z =2 eiw, where 2 = /Rz + X% and o = tan"t X (2.7)
max max R
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Equation (2.7) illustrates that the radiation resistance contrjibutes
to the real part of the total mechanical impedance. Using equation
(2.7), equation (2.6) can be written as

-1iF

x(t) = 0 l(@t-®) (2.8)

max

The instantaneous input power can now be calculated by multiplying the
real part of the time derivative of equation (2.8) by the real part of
the exciting force, Focosam. Hence, the input power, averaged over an
interval of time corresponding to an integral number of cycles of the

exciting force, is

] =

T
W, == Re(x(t)) F_coswt dt . (2.9)
1 0 Q

Substitution and evaluation gives,

F2 cos ¢

(o]

W. &= —————e

i 2 7 ?
max

but

so that

= . (2.10)

The average power dissipated by the total resistance is computed in a

similar manner and is given by



1
Wi"i‘?‘" , | (2.11)

while the average power dissipated through the radiation resistance

term, alone, is

1 .
Wr = 7 —27-!—-—— (2-12)

Equation (2.1) can now be written

Rrad Rrad
m rad

Thus, the necessity for knowledge about Rra in order tgq determine 1 1is

d

demonstrated.

2.2 Applications of Radiation Resistance

The radiation resistance and the resistance ratio have greater
value than simply that of indicating the ratio of radiated power to
total dissipated power. Knowledge of | is necessary in establishing
a quantitative relationship between the vibration of a structure and
associated acoustic vibration. In relating structural vibration with
acoustic pressure excitation, the ratio of the acceleration power
spectral density to the pressure spectral density was presented by

Lyon and Maidanik (1962), Smith (1962), and Maidanik (1962) as

S (W) Sp(w) = I'(w) k(W , (2.14)

where Sa(a9 is the acceleration spectral density, Sp(a» is the



pressure spectral density, I'(®) = [2ﬂ2n5(09/hﬂ(co/po) and p(w) is, of
course, the resistance ratio. The symbols, ns(ag, M,_co, and Py
represent the modal density of the structure, the lumped mass of the
system, the speed of sound in the acoustic medium, and the ambient
density of the acoustic medium respectively. The radiation resistance
and I'(w) likewise play a key role in usage of this method of vibration
analysis. Detailed examination of equation (2.14) indicates that
knowledge about either Sa aor Sp can be translated into knowledge about
the other provided I'(w) and p(w) can be determined.

The quantity, I'(w), depends on the variables, Cyr Py M, and
ns(ab, the modal density of the structure. The modal density of
structures has been studied by a number of investigators, including
Heckl, 1962; Bolotin, 1963; Smith and Lyon, 1965; Miller and Hart,
1967; Hart and Desai, 1967,-1 and Miller, 1969. Hence, it is passible
to determine I'(w) except in very special cases.

The quantity p(w) can be determined easily if Rrad can be computed
analytically. The mechanical resistance, Rm, can be determined experi-
mentally by measuring the reverberation time, Ts’ of the structure (see
Morse, 1948; Hueter and Bolt, 1955; Kinsler and Frey, 1962; and Morse
and Ingard, 1968),

If Rrad is not known analytically, then the unknown spectral
density (Sa or Sp) must be experimentally determined. Experimental

determination of spectral densities 1s neither as simple nor gs

1Hart, F. D. and V. D. Desai (Department of Mechanical and Aero-
space Engineering, North Carolina State University at Raleigh, North
Carolina). 1967. Additive properties of modal density for complete
structures. Presented at the 74th Meeting of the Acoustical Soclety of
America, Miami, Florida, Paper No. DD1l.
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inexpensive to perform as is determination of the reverberation time.
Therefore, the ability to predict Rrad analytically is of considerable
value.

Equations (2.2) and (2,12) indicate, of course,'that-the radiation
resistance 18 required in order to include acoustic damping force terms
in the equations of motion of a structure and to calculate the total
acoustic power radiated by a structure, respectively. The radiation
resistance 1s also used in the study of random vibration of a structure
in contact with a fluid. Appendix 10.1 provides a detailed analysis of
a randomly excited rigid piston in an infinite baffle as an illustra.

tion of this type of application.
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3. REVIEW OF LITERATURE

The radiation resistance of cylindrical shells has not been
studied in either great depth or with broad generality. In fact, the
need to do so in relatiomship to acouétics problems in air has only
recently materialized in conjunction with the development of statisti-
cal energy methods of vibration analysis (Lyon and Maidanik, 1962;
Smith, 1962; Maidanik, 1962; and Ungar, 1966).

Prior to this time, work in the area was done because pf
interests in underwater vibrations and spund transmission, and because
of interests in transducer and wave guide design. Morse (1948) con.
sidered the problem of a long cylindrical shell vibrating with uniform
surface velocity, and generated an expression for the total power
radiated per unit of length. He also developed expressions for the
power radiated from a long element of a long cylinder, and glso for a
cylinder vibrating with a velocity which is a function of pelar angle
only. The radiation resistance can be readily calculated using this
information, but the results in each case depend upon an assumed
velocity distribution over the surface of the shell.

Junger (1952a) developed acoustic resistance and reactance ratios
for partial waves emitted by long cylindrical sources whose dynamic
configuration is expressible by an infinite series which is a function
of polar angle only. The resistance and reactance ratios were subse-
quently employed to determine fhe sound power radiated. The results of
Junger's work differ from those of Mors; (1948) basically in the added

generality of the motional behavior of the cylindrical shell as a

12



function of the polar angle. Although the pronounced purpose of
Junger's work in this case was to study the natural frequencies and
forced vibrations of sybmerged shells, the general character of the
mathematical problem formulation has bearing on this research,

Later, Junger (1952b) published work dealing with the vibration
of a thin elastic cylindrical shell freely suspended in a compressible
fluid medium. The problem was analyzed by means of the classical
methods of vibration theory employing the Lagrange equations for the
system with the fluid reaction being introduced in terms of generalized
forces, The fact that the normal shell deflection is equal to the
normal fluid.particle displacement at the shell.fluid interface allows
determination of the radial and tangential deflections of the shell as
well as total radiated power. The formulation and gsolution of this
' particular problem as opposed to that of the previous one (Junger,
1952a) differs in that the specific influence of shell geometry and
material properties are included. Hence, the correlation between
theory and physical situation is better. The Lagrange method of
attacking the problem will not be used in this work but foyrmulation of
the problem in such a manner as to include shell geometry and material
parameters will be desirable.

All previous work has considered the case of motional behavior of
the cylindrical shell being a function of only polar angle. Junger
(1953) broadened the problem by considering the case of an infinite
shell which exhibited a dynamic configuration peripdic in both polar
angle and the axial coordinate. The additional degree of complexity

considered exposes the phenomenon of all axial-cogrdinate.dependent

13



modes being non.-radiating below certain "cut-off" frequencies. 1In
other matters, this part of Junger's work compares directly with some
of his earlier efforts (Junger, 1952a).

Further work with the vibration of an infinitely long cylindrical
shell in contact with an acoustic medium was done by ﬁleich and Baron
(1954). Their work amounted to a simultaneous solution of the wave
equation and appropriate equations describing the motional behavior of
the shell. The approach used by Bleich and Baron differs from Junger
(1953) in the manner in which the shell is handled. Although the
dynamic configuration of the shell in both cases is a function of polar
angle and the axial coordinate, Bleich and Baron use the invacuo modes
of vibration of the shell as generalized coordinates. This feature of
the analysis, as well as the use of simultaneous differential equations
to describe the system, yields a solution containing general emphasis
on the structural response of the shell, while the work of Junger
(1953) disclosed the properties of the acoustic field but did not per-
mit determination of the response of the shell without further analysis.

Kolotikhina (1957) considers also the problem of an infinite
cylindrical shell in contact with an ideal compressible fluid, 1In this
study the motional behavior of the shell is independent of the polar
angle but is periodic with respect to the axial coordinate. The par-
tial differential equation which describes the radial motion of the
shell was developed by combining the three usual equations for radial,
tangential, and axial motion. The resulting equation in the radial
displacement was solved simultaneously with the wave equation in the

acoustic medium and represented by an infinite series. The physical

14



characteristics of the solution compare, of course, with those of
Junger (1953) and Bleich and Baron (1954).

Previous work has been restricted to the case of thin cylindrical
shells; however, Greenspon (1961) considered the same problem but
employed three dimensional elasticity theory for the shell. The re-
sults of the thick shell approach were compared to thin shell results
and it was noted that the thin shell (approximate) theory gave excel-
lent results as long as the ratio of inside to outside radius was 0,9
or greater, Both the natural frequency and radial displacement were
also given accurately by the thin shell method for this general radius
ratio, but for smaller values of the ratio, first the displacement,
then the natural frequency proved to be in significant error.

The finite cylinder problem and its base in the literature will be
mentioned here although its relationship to the research reported here-
‘in is indirect rather than direct. Manning and Maidanik (1964)
developed a theoretical method for estimating the radiation efficiency
of a cylindrical shell., The radiation efficlency was estimated by
utilizing simple physical arguments based on considerations of the
shape bf typical modal patterns. The modes of the cylinder were
divided into groups according to the magnitude of the bending-wave
speed and the phase speeds in the directions of the panel edges as
compared to the speed of sound in the surrounding fluid, Then modal
radiation efficiencies were estimated for each group by examining the
volume-.velocity cancellation between adjacent cells of the modal

vibration pattern. Although the procedure involved in utilizing this

15



technique is complex, the comparison of theoretical results and experi-
ment was repo;ted to indicate good correlation.

A more rigorous analysis was carried out on the finite cylinder
problem by Williams et al. (1964). The technique employed was a
numerical one that employed a least-squares finite series approximation
of an infinite series expansion of boundary conditions. Expressions
for the far-field pressure and the radiation resistance were developed.
Sherman and Moran (1966) also examined the problem from this point of
view, but their work extended previous effort by developing a low
frequency approximation and by performing a more extensive computer
analysis. A variety of boundary conditions and cylinder height to
diameter ratios as well as both uniform and parabolic velocity distri-
butions on the ends of the cylinder were examined.

The physical situation of a long cylindrical shell in contact with
an ideal compressible fluid has been analyzed from several points-of-
view utilizing several techniques. 1In this study, the shell-acaustic
medium system is modeled mathematically in terms of simultaneous
differential equations--.one describing the motion of the shell and the
other, the motion of the fluid. The solution is obtained by employing
separation-of.variables methods. The results are used to obtain the
power radiated and the radiation resistance. The value and originality
inherent in this approach is the rigor and conciseness of the mathe-
matical problem formulation as well as that the result exhibits clearly
the relative importance of shell material properties compared to

acoustic-medium properties. The resulting expressions for the

16



radiation resistance are, therefore, not only more rigorously developed,

but are more general than previous work .also.
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4, ANALYTICAL DEVELOPMENT

The prohlem of an infinite cylindrical shell in contact with an
ideal compressible acoustic mecium is examined. The mathematical
formulation of the problem consists of one differential equation
describing the behavior of the cylindrical shell and another equation
describing the behavior of the acoustic medium. These two differential
equations are solved simultaneously subject to a compatibility boundary
condition at the shell.acoustic medium interface and another condition
at the boundary at large distances from the surface of the shell,. The
solution of these equations is employed to compute the total radiated
power which is used to determine the radiation resistance., The de-
tailed description of the analytical solution of this problem is
divided into a section for the equations of motion of the shell, a
section for the wave equation in the acoustic medium and a section for
the detailed solution of these equations in the two cases of mode
shapes that are considered. The first of these deals with the descrip-

tive equations for the shell,

4.1 Equations of Motion for the Cylindrical Shell
Any point on the surface of the cylinder will vibrate upon excita-
tion with an amplitude which has components that are radial, axial, and
tangential to the surface at the point of interest. The radial vibra-
tions correspond, in a manner analogous to the transverse vibrations of
beams, to a predominately bending or flexing action. The energy asso-
ciated with such flexure is directly representable in terms of the

mean-square radial velocity of the structure surface; hence, there is a

18



direct link between the bending vibrations of a structure and the
radiated energy. The axial and tangential vibrations are principally
due to extensional deformation. The energy due to these components

of vibration is represented in terms of axial and tangential velocity
components which transmit energy to the surrounding fluid by means of
a shearing aétion instead of by means of compression and rarefaction as
is the case for bending vibration. For this investigation, it will be
assumed that the acoustic medium is a perfect gas with a viscosity of
zero, hence the contribution of the shear waves in transmitting energy
away from the cylinder will be zero., In truth some small amount of
energy is radiated to the fluid by means of shear waves, but it is
negligible compared to the amount radiated by compression-rarefaction
waves.

The equations of motion for the flexural vibration of the shell
will be developed for two types of mode shapes. 1In the first case, the
mode shape is described in terms of the axial coordinate, z, only and
will hereafter be termed an axisymmetrical mode, while in the second
case, the mode shape is described in terms of the polar angle, ©, only
and will hereafter be termed a lobar mode. Figure 4.1 illustrates an
element of the cylindrical shell, the cylindrical coordinate system to
be employed in the problem and the u, v, and w components of the dis-
placement of the shell surface at a general point of that surface, a,
©, z. According to Vlasov (1949), the general differential equations
relating the displacements to the like components of the applied forces

are;

19



FIGURE 4.1 THE COORDINATE SYSTEM  AND DISPLACE-
MENT COMPONENTS AT A POINT ON AN

ELEMENT OF THE CYLINDRICAL SHELL
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The principal hypotheses involved in the development of these equations
are that a straight-line element of the shell normal to the middle
surface remains a straight line and normal to the surface after deforma-
tion and retains its length, and that the material of the shell is
isotropic and obeys Hooke's elastic law. Note that Fu, Fv’ and Fw are
components of the external surface load. For the situation of the
vibrating cylinder in contact with an ideal acoustic medium, Fu and F,
are inertia forces while Fw is an inertia force plus a resisting force
due to the presence of the acoustic medium. Since the concern of the
work will be the particulars of shell - acoustic medium interaction,

equation (4.lc) will be employed as the '"principal' equation. In other
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words, the flexural vibration is chiefly responsible for the acoustitc
vibration, hence equations (4.la) and (4.1b) will be incorporated'into
(4.1c) in order to describe the shell-acoustic medium problem in terms
of w, the radial displacement. Equations (4.1) can be further simpli-

fied for thin shells to give (Vlasov, 1949, p. 360)

2 2 2 2
0 u 1-y 3%u 1+y v ow (1-v5) 2 :

+ + + vy = o —t. a F 3 (4.23)
o2 2 aB2 2 0oB R Eh u
1+v ¥y v 1.y v L (l_vz) 2
1+v ] = U=V 2 4. 2b
zmﬁ+aﬁz+2aa2+3'a w2 Fy (4.20)

and

du + ov + 2522 L (1-v2) 2F 4. 2¢)

RV Vo vAe s el (4 2¢

Equations (4.2) are derived from (4.1) based on the hypothesis that
thin shells are characterized by a maximum value of the ratio h/a which
can be neglected in comparison to unity. At least one author,
Novozhilov (1964), interprets this to mean

h 1
T —

<
- 20
In any case, for h/a much less than one, certain terms in equations

, . . s 2 . ,
(4.1) involving the coefficient c¢c” can be neglected to yield equations

(4.2). These equations (4.2) will now be simplified and combined for

axisymmetric and lobar mode shapes.
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4.1.1 Axisymmetric Mode Shapes

For this case, the tangential shell displacements are always zero,

th

and the n = order partial derivatives of any quantity with respect to 8

will also be zero; hence, equations (4.2) become

2

2
and
du + o202 2 _ (l-vz) 2
vw cC Y YV w+tw TaFW (4.31))

By differentiating equation (4.3b) with respect to & and substituting
equation (4.3a), the result is

-V (1-V2) EZF - V2 aw 2 as (1 -V ) aF (4 4)

ER u 5 5 3& Eh 35- '

For the purposes of this study, the inertia force term involving Fu
will be neglected in comparison to other terms of equation (4.4),
since F  1s directly proportional to the axial deflection, u, at any
given frequency and u is of negligible magnitude compared to the radial

deflection, w, Integrating equation (4.4) with respect to @ and re-

arranging gives

D [Baw + Eha
2t

w] = F_ - (4.5)

The quantity Fw’ the external radial surface load, will be considered
to be composed of three components: the first is the inertia forces,

the second is the acoustic resisting forces, and the third is the
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applied surface load, q, which is due to a source within the cylinder
and will be considered to be a functlon of both time, t, and the axial
coordinate, @ The forces due to the presence of the acoustic medium
will be expressed in terms of an acoustic velocity potential, ¢. In

this case, therefore,

F = P, a8 +p [ (r,a0)] (4.6)
w o s Se2 (% Pol3E F0 ™5 : ’

Combining equation (4.6) with equation (4.5) and dividing by m, gives

the desired result.

2 4 2 o
d LA 3 L Eh;l W] 9_(_"_;.19_ + 2 [2% o0l . %)
ot ma o 5 s

s

Equation (4.7) is an equation of motion for the shell in terms of the
radial displacement, w, alone. This equation will be employed to
completely describe the cylindrical shell for axisymmetrical mode
shapes, and will be solved simultaneously with the wave equation to

obtain the desired expressions for the radiation resistance.

4.1.2 Lobar Mode Shapes

This mode shape is characterized by the fact that the axial
t
displacement of the shell surface is zero at all points, and the n h
order partial derivatives of any quantity with respect to & will also

be zero; hence equations (4.2) become

2 2
v . ow _ (1-v5) 2
eal R (4. 82)
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and

2
N, 22 P = L) % (4.8b)

Differentiating equation (4.8b) with respect to B and substituting

equation (4.8a) gives

2 5 2 OF
S8 G 4 ot AR Uov) o2 5 (4.9)

The term involving Fv is an inertia force term due to the tangential
motion of the surface of the shell. Compared to the other terms of
equation (4.9), the temm involving Fv is small and can be neglected,
since Fv is directly propertional tq thé‘tangential deflection, v, at
any given frequency and v is of negligible magnitude compared to the
radial deflection, w. By integrating the resulting equation with
respect to B equation (4.10) results:

4 2,.2
29 LA (1-Eh)a F . (4.10)
op

w

For this case, the external load, F o will be considered to be composed
of a component due to the inertia forces, one due to the aceustic
resisting forces, and one due to the applied surface load, q, generated

in the interior of the cylindrical shell. Hence

2
F = -Z-;} + a0 + o [Sh (r,8,0]._, - 4.11)

Combining equation (4.11) and equation (4.10) yields
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2 4 p
o'w D Ow q(B, t) o O¢
+ = + — [ (r,8,8)]___ - (4.12)
at? msa4 534 Ms Ms ot r=a
Equation (4.12) is the desired equation of motion for the shell in the
case of lobar mode shapes. This equation describes the dynamic behavior
of the cylindrical shell in terms of the radial displacement of the

surface and will be solved simultaneously with the wave equation to

obtain the needed expressions for the radiation resistance.

4.2 The Wave Equation in the Acoustic Medium

The differential equations of motion for the cylindrical shell
were developed in section 4.1. This section will present a brief
development of the wave equation - the differential equation of motion
for the acoustic medium. Several sources (Morse, 1948; Morse and
Feshbach, 1953; Kinsler and Frey, 1962; Rschevkin, 1963; Stephens and
Bate, 1966; Morse and Ingard, 1968) develop the acoustic wave equation
in depth; hence, there is no need for anything but brief coverage of
that development here.

The basic principles characterized by the equation of continuity,
the equation of state of the acoustic medium, and the equation for
Newton's Second Law are combined into the single partial differential
wave equation. The hypotheses inherent in the derivation of the
equation are first that the fluctuations of the variables characteriz-
ing the sound are small such that only linear variations in these quan-
tities need be considered, secondly that the process of sound propaga-
tion is adiabatic, and thirdly that the acoustic medium is an inviscid

gas obeying the perfect gas law.
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The derivation can be accomplished applying Newton's Second Law to
a "particle'" of gas which is transmitting a sound wave. The presence
of the sound wave establishes pressure variations throughout the gas.
The net pressure gradient tends to accelerate the gas "particle" in a
direction which will neutralize the pressure differences, the resulting

descriptive equation is

grad p = -poﬁ s (4.13)

where I is the "particle" acceleration.

Applying the concept of continuity of mass to a control volume
fixed in space relative to a passing sound wave, a second relationship
can be developed. The flow of mass across the boundaries of the region
represents the only way in which the total amount of mass within the
region can change: the time rate of change of mass within the contrel
volume will be equal to the net flow of mass into or from the volume.

Hence

?T?: = -div(ed) . (4.14)

The fluid density is, in general, definitely a function of position,
but a great simplification in the mathematics can be achieved at small
expense in accuracy by representing p in terms of the ambient density,

Pos hence

?T‘; = _p, dtv(® . (4.15)

Employing the equation of state of the fluid gives information for

three equations in three unknowns (p, 4, p). The perfect gas law
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utilized in conjunction with the information provided by the adiabatic

process hypothesis gives
2
P(xy,8) = cp(x4,0) 5, (4,16)
where

2 _ -
¢, = Poy/po, and 7y = cp/cV .

Combining equations (4.13), (4.15), and (4.16), the wave equation

results:
2 1 62

vV P=—F

[

o

i)

(4.17)

i
[n)
.

where §72 is a symbolic operator known as the Laplacian operator. In

cylindrical coordinates

2 19 d 1
ViR T2

81J°&
+
%LJOL

For the purposes of this research, it is convenient to write equation

(4.17) in terms of the velocity potential, ¢. Thus the wave equation

becomes
2
1
v? = = a_;. , (4.18)
g ot

and the pressure and the radial fluid particle velocity are then given

by (Morse and Ingard, 1968)

P =0, g% , and u_ = - g; . (4.19)
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I, 3

Hence the wave equation in cylindrical coordinates is known and will be

solved simultaneously with the equation of motion for the shell.

4.3 Solution for Axisymmetric Mode Shapes

Descriptive equations were developed in the previous sections for
both the cylindrical shell and thg acoustic medium. This section indi-
cates the boundary conditions employed and the solution obtained for
the case of an axisymmetric mode shape.

Two boundary conditions are required for the simultaneous solution
of equation (4.7) and the wave equation written in terms of the veloc-
ity potential, 4. One applies at r = a; the condition being that at
the shell-fluid interface, the radial velocity of the shell surface is
equal to the radial velocity of the fluid particles in contact with the
shell., The other boundary condition applies at large distances from the
surface of the shell as r approaches infinity where the intent of the
condition is that only solutions of the acoustic wave equation which
represent outgoing waves are admitted as pertinent in this case. The
physical implications of the last boundary condition are that no reflec-
tion or other physical disturbance occur at the far boundaries of the
acoustic medium.

At the shell-fluid interface, the boundary condition can be

expressed mathematically as

o

‘EE (a) t) = %:; (r)a, t) r (4. 20)

=g "’

and at large distances from the surface of the cylindrical shell,
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lim ,/?[g; - i kr ¢] =0 ' (4.21)
r—-00

for kr > 0, and

. o¢ _
lim r [3? - Er $] =0 (4.22)
T—00
for Er =1 kr > 0, where kr is the separation constant that appears in

the separated ordinary differential equation in the spacial variable,
r. The boundary condition expressed in terms of equation (4.21) and
(4.22) is termed the radiation condition and is treated in detail in
the literature by Sommerfeld (1949).

The solution of equations (4.7) and (4.18) subject to the boundary
conditions (4.20), (4.21), and (4,22) is accomplished by utilizing

separation of variables; i.e., let

o(r,a,t) = R(r)G)T'(t) . (4.23)
Substituting equation (4.23) into equation (4.18) and for ¢ # 0, divid-
ing by ¢ yields

R" U LR' 16 _ 1T
oS SR 3 & sl (4.26)

o

Breaking this equation down into three differential equations in the

three variables r, Q, and t yields

R" 1 Rl

Bt rE = _ki , (4.25a)
1 1"

% %_ - _ks , (4.25b)
a
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1 TI" 2

— = -k°, and (4.25¢)
CO

2 .2 _ .2

K2 4k =k (4. 26)

Equation (4,253) can be rewritten as

nwoy oo 2, _
R" + ZR' + kR =0 (4.27)

which is easily recognizable as a Bessel differential equation. For

kr > 0 equation (4.27) has the solution
R(r) = C(l)Hgl)(krr) + C(Z)ng)(krr) , (4. 28)

2) are Hankel functions of the first and second kind

where H(l) and H(

o o
of order one respectively. 1In the case such that Er =1 kr > 0, the
solution is again written in terms of Hankel functions of the first
and second kind, but the arguments of the Hankel functions are

imaginary rather than real as is the case in equation (4.28). Hence

for k_ >0
r
R(r) = B(l)Hél)(iErr) + B(Z)Héz)(iﬁrr) . (4.29)
After rearranging, equation (4.25b) becomes
" 2 2
G"() + kza G(®) =0 . (4.30)

The solution to equation (4.30) is a sinusoid; hence, the motion

nné

of the shell is periodic in the CQ-direction according to Ansin-TT-a s0
_ _ nna
G@) = Gn(oo = An sin T2 (4.31)
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R'(a) G(O)T"(t) + ez[R'(a)GIV(ODT(t)]

+ & Eha [RU(D)GADT(H)] = == £ Q_ sin 22 oo™
m n L
s n=1
Po
+ — R(a) G(Q) T" (t) (4.41)
s
Rearranging, noting that
1Y v _ nna, 4 nra _ _ nna, 4
G (@) =6 (@ = An(T) sin —— Qa = (T) Gn(a) ;
and summing gives
Po " nna, 4
Z [R'(a) - — R(a) ]G ()T"(t) + e z [0——9
n=1 s n=1
Eha2 1 nxa iwt
]G ()R'(A)T(t) = — z QnsinT a e . (4.42)
s n=1

Combining this result with equation (4.34) and dropping the common

summation sign yields

el Q
(RY@ - 2 R@Te + FLED Ena’ ey} A = 2
s 8
(4.43)
For the case kr > 0 and An a real constant, R(r) = Hél)(krr) and
(4.44)

R'(r) = gL él)(k r) = -k H(l)(k )

Hence equation (4.43) can be written
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P
(ki 2y - 2D (e )16+ TS
8
Bl M g ayy) 4 = 4.45)
—75-4 (-k By (kpa))) Ay = o= (4.

8

However Hél)(x) = Jm(x) + i Ym(x) consequently substitution of this

expression into equation (4.45) ylelds a real and an imaginary equation

as,
P
(Do 3y (k) + 52 3,00 0% - LD
8
2 Q
+ E%;_qerl(kra)) AL =2, (4.46)
S
and

P
[[krYl (kra) + I-n-:- Yo(kra) ]0)2 _ €2[(}_‘1{3)4

FER v )] A =0 4.47)
-1k, 1( ) A =0. (4.

Equation (4.46) gives the desired relationship for An while equation
(4.47) provides information about the natural frequencies of the

immersed shell, Equation (4.46) yields an expression for An given by,
Q
A = 2 , (4.48)

n = o
0 2 2
ms{[erl(kra) + E; Jo(kra)]w - thrJl(kra)]

where
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2
2= At L By (4,49)

Defining
2
w2 = o (4.50)
n N Jo(kra) '
1+ — ET R Ey
Ms rJl r?

and rewriting equation (4.48) produces

Q
A = n’ X (4.51)

n 2 2
mserl(kra) X (@7 - v)

8N

23 N

Consequently, the velocity potential can be written as

iw ani . ngxa Hél)(krr)elwt
o(r,q,t) = — § 55— sin o RG] (4.52)
s n=1 Xn(w -V rivr

for the case of kr > 0.
If kr is imaginary such that ﬁr = ikr >0 , the real constant An
can be determined in the same manner as for kr real. A detailed

determination shows that for this case,
o(r,a,t) =0 . (4.33)

At this point, the equations for the velocity potential will be
written in terms of a non-.dimensional series. The purpose for doing so
being that numerical evaluation of the resulting expressions for the
radiation resistance is desirable and worthwhile. Hence, the series

will be expressed in terms of the dimensionless parameters:
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@a n -
T]—-c—;, §——E:-, and xr—kra . (4.54)

Introduction, as well, of the notation

Q v
T & seLa
_ o ‘mn X
Sn_((x) - an'. 2 vna 2 g J (4P55)
[(E;) - (1::9 ]kraJl(kra)
or
Q v
.3 (72) sin E%i a
Sn(OO _ o n

2 2
[Tl - & ]erl(xr)
yields the following dimensionless series for the velocity potential,
N

feq 3
o(r,0,8) = —2 (29 z Sn(oOHgl)(krr)eiwt , (4.56)
S (o4 n=

for k. >0 and ¢ =0 for k_=1ik_ >0
r r r

The veloclty potential has thus been determined. The final objec-
tive of calculating the radiation resistance can now be undertaken.
This task can be approached in at least two different ways. In the
first instance the pressure acting on the vibrating surface can be
evaluated; the velocity distribution of the vibrating surface,
ascertained; and from these two results the radiation impedance, Zr,
determined. The radiation resistance will, of course, be the real

portion of Zr’ Alternatively the acoustic pressure in the surrounding
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medium can be determined and that pressure employed to find the
radiated power, wr. Next, utilizing the relationship between the
radiated power and the mean square surface velocity of the vibrating
surface, the radiation resistance can be determined by calculating the
mean square surface velocity,

The results of the first technique is an instantaneous, local
radiation resistance, while the second technique yields an average
value for the radiation resistance both in time and spacial coordinates.
The average value is the most useful from an engineering point of view;
hence, the second approach will be employed in this research.

At large distances from the surface of the cylindrical shell, the
acoustic pressure will be determined by noting that p = pp g% and
that the Hankel function can be asymptotically represented in terms of
an exponential function as,

T
ik oD
2 e T (4.57)

(L
Ho (krr)

The acoustic pressure in the far.field is thus

2 i
- o pPQ 3 i(wt +k -5
a 2 4
P = __59_2 (—7) hN Sn(a) ?TE-?- e r . (4- 58)
s cs n=] r .

The radial fluid particle velocity is obtained by noting that at large
distanceg from the surface of the shell, the cylindrical wave frant
behavior approaches that of a plane wave front in any small increment
of polar angle. Consequently the plane wave relationship between p and

u, will be employed to generate
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2 . 10
- wQ 3 i(ut +k r-4
N o ,a / 2 r I
n=1 r
The product of the real part of the acoustic pressure and the real part

of the fluid velocity averaged over time is the intensity or radiated

power per unit of acoustic field area. Then

o &' 6
0 o ,a
Re{p}RE[ur} = ——2-—- (—5-)
mS CO
2 Eis
x Z Sn(a) m coSs (Cl)t + krr - z-)
n=]1 r
2 " T
X mf Sm(a) ;T-E-r? COS((Dt + krr - I) . (4.60)

But
o s
cos (wt + krr - Z) = cos Wt cos (krr - z)
N
- sin ot sin (krr - z) = D1 cos wt - D2 sin wt ,
so
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| poaﬁqg a6 2 2
Re(plRelu ) = —o— () ( 2 $,(D [5 D} Z 8.(& [z D)
m L) n=1 T r

m=1

2 2 2 .
X cos” wt - X Sn(a) -_ER—PE Dl Z Sm(a) m D2 cos Wt sin wt
n=1 r m=1 r
Y 8 (0 2 D Z S (0) ——?1— D, sin wt cos wt
- %k r 2 m sk r 71
n=1 r m=1
v 52 5@ /-2 b, £ 5 (@ 2 _ D, sin? wt ) (4. 61)
n kT 2 m ik T 2 : )
n=1 r m=1 r

Averaging equation (4.61) over a number of full cycles of excitation

gives the intensity

T
1
Ig = 7 (j)' Re[p)Re[ur] dt , (4.62)
or
4 2
p wQ 6
o o ,a 2 2 2 2
lg= =7 (2 [ 2 5,0 [gx 2 5@ [ @ +D) ]
2m c n=1 r  m=1 r
s 0
2 2 2 7T 2 T
But Dl + D2 = cos (krr - ZI) + sin (krr - Z;') = 1. , hence
4 2
p 0% él6) £ 5.(@ [2= £ S (0 [ 4.63
a - 7 (@ nk_r m k r ° (4.63)
ZmS <, n=1 r m=1 Y
The total power radiated will now be computed as
L
a
Wr= g 2nr-Ia- do
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Therefore substitution of equation (4.63) into the above expression

yields
L
ﬂrpoaﬁq 6 a
W, = (-59 f [ Z L,
m =1
]
x I L sin =& L o} do
m=1
where
Qn vy 2
O N A3
I = o n
R C O PR

nna

sin —— QO

L

(4.64)

(4. 65)

Two types of terms result when the series in equation (4.64) are

multiplied; however, only one of these terms has a non-.zero integral

due to the orthogonality of the sine functionm.

L

a
f L2 sin’ Efi ada

for n =m while for
L

a
[ 1 sin o1

Hence,
nrp w4Q2 6
W = o ‘o (a )
* m2 c
] o

L2L
m

Ty

n #m

mra
L

-
El Za ’

Thus

sin —— odo =0 .
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v 2
pon;azL wa, ;m; s 2 1 2
W, == (= I [—%——2——2—} [—-—7——;] . (4.66)
r m_c, 9  m=l xr(n -£7) erI Xy

The mean square surface velocity of the vibrating surface is now

required, and will be calculated through the relation,

o
Yy R =Yg - (4.67)
r=a r=a
Thus
. (1)
iuQ 3 dH .
o ,a o) iwt
Ya T T Th (_f') z 8, ¢ (k) € ’
S c n=1 r=a
W)
or
ioQ .3 .
_ o .a (L iwt
u, === (= I S (@kH ’(kae , (4. 68)
s < n=1

where u, is the instantgneous velocity on the vibrating surface and is
a function of both time, t, and position, . The real part of this
quantity will now be squared to yield Uz, a quantity which is to be
averaged over time and space to produce the mean square surface

velocity, U2.
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2 2

= [Re{u_}]12 = C_D_zﬂ (3:.) ( £ s (k¥ I S (dkY, cos?at
a mg e, n=1 o r m*l

+>:S(a)kY ps

s (oz)k chos wtsin wt
n=1 m=1

+ X 8 (a)k Jl L 8 (a)k Y sin wt cos wt
n=1 m=1

+ Z S(O!)kJ

L I S,k sinot } (4. 69)
=1 =

m=1

Averaging Ui over time, t, generates

T
1
U2 = L é Ug dt s
or
2 ;—-zqg (.2;“6) [ £ s,(@kY¥, T 8 (kY
v = o)
& s ¢ n=1 b=l !

+ L 8 (a)k J1 z Sm(a)kr.]l] . (4.70)
n=1 m=1

The mean square surface velocity, Uz, evolves after averaging with

respect to variation in Q; i.e.,

2.2 L
2 @ Qo 36 a a
U=—2—1—(-&-)rf[28(a)lei:S(a)kY1
m c 0 n=1 =1
8 [o]
+ L 8 (kI L S (k. Ty } da . (4.71)
n=1 m=1

Again, as in the case of the expression for power radiated, the
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integration of a product of series gives the results as two character-
istic types of terms. And because of the orthogonality of the sine
function appearing in the quantity, Sn(oo, one of these terms is always

zero, while the other terms produce the result

AV, 2

(D 2
Qa 2 2 q ‘X 2 Y7 (x)
A G D R L e et I (4.72)
50 o m=1 n - & Jl(xr)

The radiation resistance per characteristic length of the shell is thus

2
Rrad=2wr/u or
v 2
m
/% 2 .
2l 1 [ 55—
m=1 n - x_JT(x )
R, =4p c L (2?2 rL T (4.73)
rad = *Po% (539 V. 2 ) ’
W% &2 2 Yy
gy 15— ]
mFl T] -E, Jl(xr)

Equation (4.73) represents the desired result for kr > 0 since for

kr >0, Rrad = 0 . This result is expressed in terms of a dimension-
less series and is to be numerically evaluated for realistic values of
the dimensionless parameters which determine its magnitude.

This completes the analytical development for axisymmetric mode

shapes. The next section deals with the analytical development of the

solution for the lobar mode shapes.
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4,4 Solution for Lobar Mode Shapes

Descriptive equations were developed in sections (4.1) and (4.2)
for both the cylindrical shell and the unbounded acoustic medium. This
sectioﬁ explains the boundary conditions employed and the solution
obtained for the case of a lobar mode shape (i.e., a shape which can
be described in terms of the polar angle, 6, oﬁly).

As in the axisymmetric case, two boundary conditions are required
for the solution of equation (4.12) and equation (4.18). One applies
at the shell.fluid interface where r = a and the other, at large
distances from the surface of the shell as r approaches infinity. At
r = a, the condition means that the radial velocity of the shell surface
is equal to the radial velocity of the fluid particles in contact with
the shell; while the other boundary condition, applicable at large
distances from the surface of shell, requires that the solution to the
wave equatibn represent an outgoing rather than an incoming wave
motion. Acoustically speaking, this boundary condition corresponds to a
free or an anechoic simulation of a free field.

At the shell-fluid interface, the mathematical statement of the

boundary condition is

e =Laenl (4.74)

r=a,

and at large distances from the surface of the shell,
lim T2 .1 L6 =0 (4.75)
or c ’ )
r—00 o

where w/cb is the quantity analogous to kr in the boundary condition
for the axisymmetric case.
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The solution of equations (4.12) and (4.18) subject to the bound-
ary conditions (4;74) and (4.75) is accomplished by use of tha.method
of separation of variables; i.e., let

o(r,0,t) = R(r) ©(6)T' (L) . (4.76)

Substituting equation (4.76) into equation (4.18), assuming that

¢ # 0, and dividing by the expression for ¢ yields

Rll 1 Rx 1 eu _ 1_Tn|
- s e A (4.77)
(8]

But recalling that the quantity, T, was simply an exponential in time,
t, in the previously discussed axisymmetric case, that analogy can be

employed now and equation (4.77) can be easily rewritten as

Ru 1 R! 1 eu B W 2
I_{—+?'R_+:f~®___(-é:) _ (4.78)

This equation can be separated into two ordinary differential equations

in the variables r and © as follows:

2 R" R 2 w2 2
g +r . + r (EZQ =m" (4.79)
and
< - me . (4.80)

Equation (4.79) can be rewritten in a more conventional form as

" 1 1 a) 2 m 2 -
R" + = R' + [(E-;-) - (?) IR =0 (4.81)
which is readily recognizable as a Bessel differential equation. For
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ayco > 0, the solution to equation (4.81) is

rR(r) =c P '(%’._Z_) +c{Pyg? (‘;_’:1:.) , , (4.82)

2)

where Hél) and H( are Hankel functions of the first and second kind

m

of order m respectively. This solution differs from the solution in
the previous section on axisymmetric modes in that the order of the
Hankel functions is now m compared to the order of ome in the previous
case. And because ayco is always real, equation (4.82) represents the

only solution to equation (4.81).

Rearrangement gives equation (4.80) the form

" + mze =0. (4.83)

The solution to this equation is a sinusoidly varying function in
terms of ©; hence, the motion of the shell is periodic in the o-

direction according to Am cos mO yielding

o(8) =0, (6) = A cosme . (4.84)

Knowledge of R and 0, of course, gives information about the velocity
potential, ¢. Applying the radiation condition verifies which term of
equation (4.82) corresponds to an outgoing wave and simplifies the
expression for ¢ as a result. The radiation condition (equation
(4.75)) can be written as

lim JT [R'(r) - i E“.’.R(r)] =0 . (4.85)
T-+00 9

Substitution of equation (4.82) into equation (4.85) shows that

the desired solution is (Appendix 10.2 gives the details of this
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Z=bm (4.96)
msa

and breaking the Hankel function down into its real and imaginary
parts--J , a Bessel function of the first kind of order m, and Ym’ a

Bessel function of the second kind of order m, respectively--yields a

real and an imaginary equation as

A
2 2 m ua w2 wa
[-” + X T = [ (5 - (D I, (D]
o o o
2
ap,b %
om aay
+ —_— Jm (E_Q == (4.97)
s o} s
and
2 A wa wa

[-w '+Xi] 2?-[mYm (%EQ - (P Y ]
o o o

2
@ pOAm wa
+ ‘"a;“"Ym (E;) =0 . (4.98)

Equation (4.97) gives the desired relationship for Am while equation
(4.98) provides information about the natural frequencies of the

immersed shell. Equation (4.97) yields an expression for Am given by

Qm
wa wa wa
ms (me (q) - q Jm+1 (T))
A= = °> . (4.99)
X2 2 p a I (5_9
(mo_ef ey o \
i ?r'[ - ( r wa wa 3 wa )1}
s oy @ - @
(o] (o] (o]
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Defining

2
V2 = . n , (4.100)
m wa
P a Jm (E‘Q
1. 2 ¢ 2 )
m axa aa wa
s ol (P - = &
(o) o] [o]

and substituting this expression into the formula for Am produces the

result
%V
A = . X (4.101)
wa wa wa 2 2 2
m_ (mJ (339 - E;'Jm+1 (E;)) X, (v = @)

Consequently, the velocity potential can be written as
vaf‘ cos m8 Hn(11) ((LCLE) elwt
iw
(b(r)e,t) = ;—1— Z; i 7 ) 2 (4'102)
s m=o X (vo-0*)[mI (W) - W__ (D]

for the lobar mode shapes,

At this point, the equation for the velocity potential will be
written in terms of a non-dimensional series. The purpose for doing so
being that numerical evaluation of the resylting expressions for the
radiation resistance is desirable and worthwhile. Hence, the series

will be expressed in terms of the dimensionless parameters:

v _a
wa ~'m

n = - and E = -_— . (4.103)
o] (o]

Introduction, as well, of the notation
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But

cos[wt + kr - Yx(m+%)] = cos wt cos[kr - yy(m+% ]

- sinwt sin[kr - ¥x(m+%) ] = Bm cos wt - cmsin wt ,
SO
o026 2 2
Re{pJRe{u } = — (= ( Z 5@ [— B I s (6 —= B,
ms Co m=0 n=o0

2 2c0 2cO
X cos"wt - I sm(e) = Bm z Sn(e) = cncoscbt51num

m=o0 n=0

2cO 2cO
- Z sm(e) = ‘u z on(e) = Bn51n<ntcosa¢
m=0 n=o0
Zco 2Co 2
+ X Sm(e) m Cm 2 Sn(e) -T—E-a—)i_- Cn sin wt ] . (4u 110)
m=0 n=0

Averaging equation (4.110) over a number of full cycles of excitation

gives the intensity

T

1
Ie = F é Re[p}Re[ur}dt 5 (4.111)

or
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PP Qo a6 2cO 2c0
Ig = (—5') { = Sm(e) o B, Z Sn(e) gy Bn
2m cO m=0 n=o0
2co
+ m§0 Sm(e) .ﬂ—(.l)? Cm Cn } . (4.112)

As indicated in Figure 4.1, the total power radiated per unit of
cylinder length is obtained by multiplying I, by an element of area on
an enveloping constant coordinate surface perpendicular to the direc-
tion of energy propagation and by then integrating over that surface,

Hence

2y

Wr = é 1-rde - Ie

Substituting (4.112) into the above equation yields

a
Wr = ————7—-(—59 f { = Sm(e)Bm M Sn(e)Bn
nms cO 0 m=0 n=o0
+ X Sm(e)cm % Sn(e)cn } de . (4.113)
m=o0 n=o

The product of the two series results in two types of terms:

2 2

v
cos mB Qﬁ/Qo (-Xl) cos nO® do
n

v
21 Qm/Qo (ﬁi?

B B
mn

(f) 2 2 Z 2
[67-n"1[mI (M) -nI  (MW]IE"-n"]1[nI (M-I (W]

when n # m and
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FIGURE 4.2 SCHEMATIC OF ACOUSTIC FIELD AREA

INTO WHICH VIBRATORY ENERGY IS

RADIATED BY THE CYLINDER
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v 2
, 2 %/, ('XLI:') 2,
B [ [—— 1 cos“mode
0 (£7-n7) oI (M) -nJ (W)

B8

when n = m., From the orthogonality properties of the cosine function,
the first type of term is equal to zero in all cases, while the second

type of term is naon-zero, so

v 2
m
pow?’Qi a® W% (3(;1-) 2
Wr = Gjﬂ z 7 2 ' ]
m c, m=o (¢ -7 )(me(ﬂ)~ﬂJm+1(n))

2 2
X [Bm + Cm]

or utilizing equations expressing Bm and Cm in terms of sine and

cosine as

2 2
Bm + Cm = cosz[kr.-g-(m-+%)] + sinz[kr._% (m+%] =1 ;
hence,
Vo 2
poqia3 wa. 2 Qm/Qo (7;) 2 1 2
W= (D [ —5—m—1 [ = ]
r L o m=0 £ -1 me(n).-nJm+1(ﬁ)

(4.114)

The mean square surface velocity of the vibrating surface is now

required, and will be calculated through the relation

=u . (4.115)

Thus
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'ino 3 d (1) ,wr iwt
H (c

a
u, = —=—— (= Z S (& g §’ —) e s
8§ ¢, m=o o 'r=a
or
iaQ 2 :
o ,a = . 1wt
“a T (;59 i; 8,(® [J, +1iY ] e ; (4.116)
o

where u, is the instantaneous velocity on the vibrating surface and is
a function of both time, t, and position, ©. Note that J and ¥ are

the real and imaginary parts of the derivative of H(l)

L with respect to

r respectively. The real part of this quantity, u_, will now be squared
to yield Uﬁ, a quantity which is to be averaged over time and space to

produce the mean square surface velocity, U2.

2.2
U2 = [Re( }]2 -2 2o (a4) { = s () Y = s (8 ¥ cos‘wt
a = LRelYy T T VA ~ "n n @
ms Co m=0 n=o

“+ 2 I sm(e) Y, by sn(e) J, cos wt sinwt
m=0 n=o

+ L s (®) I I 5.(® I sinwt ) . (4.117)
m=oQ n=o

Averaging Ui over time, t, generates

2 4t
a

)

T
2 1

U = [ U
e T o

or
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2 @ Q0 a4 - -
Vg == (p [ Z 50O %, 2 517,
2m c m=o n=p
S [0}
S+ % sm(e) jm = sn(e) jn 1o, (4.118)
m=o0 n=o0

, 2 . .
The mean square surface velocity, U”, evolves after averaging with

respect to variation in 8; i.e.,

2.2
w Qo 4 27

2 _ a = -
U = [—!-E; (:4—) é { mi:o Sm (8) Ym nio Sn (©) Yn
(o]
+ % sm(e) jm x Sn(e) jn ] de . (4.119)
m=o n=o

Again, as in the case of the expression for power radiated, the integra-
tion of a product of series gives the results as two characteristic
types of terms. And because of the orthogonality of the cosine func-
tion appearing in the quantity, Sm(e) , one of these terms is always

zero, while the other terms produce the result

v 2
Qa 2 2 Q/Q G
2 o wa, m
UVelmge @ g ]
o m=0 £ -1
@i () - n¥_,, ()7
x [ 1+ 0 ] . (4.120)

(3 () - 03, ()

The radiation resistance per unit of length of the shell is thus

_ 2
R4 = 2Wr/U or
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Qm/Qo (§79 2 2

5[ L . ]
Z_ 2 mJ () -nJ ., (W
R = 8p c_a(—) - — e :
c 2

W% 2 @y (wemy, ()2

£ [ —p—p—1 [1+ 5 ]
m=o  E2.7 (3 (D =nd_,; (D)7

(4.121)

Equation (4.121) is the desired result in terms of a dimensionless
series and is to be numerically evaluated for realistic values of the
dimensionless parameters which determine its magnitude.

This completes the analytical development for lobar mode shapes.
The next chapter deals with the numerical evaluation of the analytical

expressions obtained in Chapter 4.
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5. NUMERICAL EVALUATION

The radiation resistance expressions develéped in Chapter 4 were
written in terms of dimensionless parameters fo facilitate subsequent
numerical evaluation of the results. In this chapter, the numerical
evaluation scheme is presented and the results of numerical evaluation

included in the form of graphs and tables.

5.1 Numerical Evaluation for Axisymmetric Mode Shapes

Numerical evaluation of the expression (4.73) for the rad?ation
resistance in the case of axisymmetric mode shapes can be accomplished
by noting that X, £, and vn/Xn can be written in terms of more basic
parameters which are related to the geometry of the shell and the
physical properties of the shell material and fluid.

Equation (4.73) is written in terms of the dimensionless param-
eters, 1, £, and x . Itis desirable to consider £ and x_ as dependent
variables and write them in terms of 1, the independent variable. This
approach is physically meaningful due to the fact that n = (ua)/co
where w is the as yet unspecified and therefore arbitrary forcing
frequency of the applied surface load, q(&,t). Thus from equation

(4.26) and equation (4.33)

2 2 n, 2

2ol @2, (5.1)
or

(kra)z - (ka)? - (P{i)z . (5.2)

Consequently from equation (4.54) and the fact that k = a/co,
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x_ = [n° - EHHE - (5.3)

The quantity, x., is thus expressed in terms of 7 and a/L, a shell
geometry pérameter, as desired, From equation (4.50), it is possible
.to write vn/Xn indirectly in terms of 71 also. Obviously

oy ® :

% Po o (kra) ’

1 + 2
m k J
s rl

a
r

but by noting that m is the mass per unit area of the shell surface
and is, hence, equal to the shell material density, Py multiplied by

the shell thickness, h; the above expression can be written

n 2 1
(D (5.4
W Gyt 0

Pg L7 ML erl (xr)

Equation (5.4) is expressed in terms of the desired quantities as well
as a new geometric parameter, h/L, the ratio of shell thickness to

characteristic length,

Considering equations (4.54), the parameter £ can be written as

v .a 2 Xaz2 v_ 2

2= (D =D D (5.5)
(o] (o] n

Employing equation (4.49) and the information that

=, (5.6)
a m
]
3
Eh
D = — 5.7)
12(1-v9)
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and that the longitudingl plate velocity

E

2
¢t = , (5.8)
L Ds(l-vi)

permits the development of the expression

v 2 c. 2 4
_ (mm) h.2 ,a 2 2
£” = (R-Q [(3—9 [ T3 (I9 (i? + (1-vD) } ] . (5.9)
Consequently all quantities in equation (4.73) for the radiation
resistance are now represented in terms of the forcing frequency
parameter, 7; the shell geometry parameters, a/L, and h/L; and the
material properties, po/ps, CL/co’ and vwith Qm/QO = 1/n.

The numerical analysis, per se, is a parameter study of the
problem in terms of the previously mentioned parameters: the ranges of

values for the shell geometry parameters and for n are approximately
10 < 1 < 107,

10 < a/L < 1 ,

and

10 < h/L < 10

In the case of shell material and fluid property parameters, the
materials and fluids considered in this work are indicated in Table
5.1. The shell materials and fluids considered here are representative
of the kind encountered in structure-fluid interaction environments and
of the range of physical properties exhibited by such materials and

fluids.
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Table 5.1 Physical properties of typical shell materials and fluids

1
She}ll ;ggﬁfug lgensit Pois§on

Materials (lbf/in. ) ( m/ln, ) Ratio
7075 Aluminum 10.4 (10%) .101 .333
316 and 317 6
Stainless Steel 28 (107) .288 .176
Titanium 6
(Ti-7AL-4Mo) 16.8 (10) .162 .292
Beryllium 43.0 (10% 067 .030
Magnesium 6.5 (10% 064 .35
Acoustic Velocity Densit

Fluid Sound (ft/sec) (1bm/in. )
Air 1117 4.4276 (107)
Water 4859 3.605 (1072
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The details of the computer program employed in the parameter
study are given in Appendix 10,3.1. It should be noted that the
series in equation (4.73) are, in fact, finite series because of the
fact that kr > 0. The program incorporates this information and
terminates summation for any value of n greater than n/(wa/L). The
program also terminates summation in the case of convergence to a
stable value for each series.

The numerical results are shown in Figures 5.1 through 5.5 as
well as in Table 5,2. Figure 5.1 presents the dimensionless Rrad for
small 7: the acoustic medium is air. Because this result peaks at
each resonance of the shell, an averaged or smoothed curve would be
more useful in octave band analysis work. Hence the computer (see
Appendix 10.3.2 for the program for averaging Rrad) is employed to
average the theoretical curve to obtain the averaged curve also shown

in Figure 5.1, Figure 5.2 depicts the same information for an acoustic

medium of water instead of air. Figure 5.3 is essentially a comparison

-of the results for small n for acoustic environments of either air or

water. In Figure 5.4, the averaged radiation resistance for a shell in
contact with water is indicated for a wide range of mn values. Finally
in Table 5.2, the radiation resistance of a cylinder in air is shown
for various values of the geometry parameter, h/L.

Table 5.3 presents a comparison of the radiation resistance of a
cylinder in air for various choices of cylinder material. The results

are obviously only weakly dependent on material properties.

65



99

ACOUSTIC FLUID — AIR

12 a/l = 0.0l
h/b = 1.0(107%)
o' -
ot
g
© o
©
-—— ’_
-— ”
m— w—
— e AVERA GE D CURVE
PEAK AMPLITUDES ARE NOT
TO SCALE
—24 | { | [
0.l wa 0.3 04 0.5 0.6
CO
FIGURE 5.1 DIMENSIONLESS RADIATION RESISTANCE Vs (£%2)




Lo

100.

dB re

RrO d/Po co l

ACOUSTIC FLUID — WATER
12k a/L 8 0.0l
: h/L = 1.0(1075)
of-
— — AVERAGED CURVE
_|2-.-
e = PEAK AMPLITUDES ARE NOT
TO SCALE
-24 | | | _ |
0.l 0.2 wa 03 04 0.5 06
Co
FIGURE 5.2 DIMENSIONLESS RADIATION RESISTANCE Vs wa




Table 5.2 Dimensionless radiation resistance for various values of h/I.

Dimensionless Radiation Resistance

(a_)a_) a/L = 0.01 Acoustic Fluid -~ Air )
‘o h/L=:1.0(1o'5) h/L:Qi:6216“4jm >7”—1VGJ=1;6(16'3)—

. 3400 5.202 5. 200 5. 200
. 3600 12. 100 12.090 12.090
. 3800 7.972 7.966 7.965
. 4000 6.669 6.665 6.665
. 4200 17,170 17.150 17.150
. 4400 10. 360 10. 350 10.350
. 4600 8.334 8.327 8.326
.4800 24.380 24. 350 24. 340
.5000 13.20 13.18 13.18
.5200 10.06 10.05 10.05
. 5400 35.66 35.62 35.61
. 5600 16.40 16.36 16. 35
.5800 11.90 11.88 11.88
. 6000 58,18 58,12 58.12
. 6200 20. 36 20. 30 20. 29
. 6400 14.20 14.16 14.15
. 6600 222.70 229. 70 229.70
. 6800 25. 29 25.19 25.18
. 7000 16. 65 16.59 16.58
. 7200 13.08 : 13.04 13.03
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Table 5.3 Dimensionless radiation resistance for various shell
materials in contact with air

Dimensionless Radiation Resistance

. a/L = 0.01 h/L = 1.0(107°)
@ o Lo
Aluminum - Titanium | Beryllium
. 1000 - 2.870 . 2.870 2.870
. 1200 1.732 1.732 1.732
. 1400 2.869 2.869 2.869
. 1600 8.213 8.213 ' 8.212
. 1800 3.186 3.186 3.186
. 2000 5.450 5.449 5.448
. 2200 76.570 76.570 76.57
. 2400 5.155 5.154 5.154
. 2600 9.447 9.445 9.444
. 2800 5.264 5.264 5.263
. 3000 7.79% 7.792 7.791
. 3200 16.060 16.050 16.050
. 3400 7.362 7.361 7.360
. 3600 11. 360 11. 350 11. 350
. 3800 29.530 29.53 29.520
. 4000 9.980 9.977 9.975
. 4200 16. 290 16. 280 16. 280
. 4400 153. 200 153. 200 153.100
. 4600 13.270 13.270 13.260
continued
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Table 5.3 (continued)

Dimensionless Radiation Resistance

a/L = 0.01 h/L = 1.0(107°)
(%fé 7075
Aluminum Titanium Beryllium
. 4800 23.440 23.430 23.430
5000 12.050 12.050 12.040
.5200 17. 380 17.370 17.370
. 5400 34. 810 34. 800 34. 790
. 5600 14.850 14. 840 14. 840
5800 22.750 22.740 22.730
. 6000 57.660 57.650 57.630
. 6200 18. 460 18. 450 18. 450
. 6400 30.110 30. 100 30.080
. 6600 229. 700 229. 700 229.700
. 6800 22.940 22.930 22.920
. 7000 40, 690 40.670 40.650
. 7200 19. 440 19.430 19. 420
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5.2 Numerical Evaluation for Lobar Mode Shapes

Expression (4.121) for the radiation resistance in the case of
lobar mode shapes is evaluated numerically by noting that ¢, and Vm/uﬁ
can be written in terms of more fundamental parameters which are re-
lated to the geometry of the shell and the physical properties of the
shell material and the fluid.

Equation (4.121) is expressed in terms of the dimensionless param-
eters, 1, and &. Since n = (wa)/co where w is the as yet unspecified
and therefore érbitrary forcing frequency of the applied surface load,
q(®,t), it is convenient and desirable to hypothesize that ¢ is a
dependent variable in the problem and write it in terms of 7, the
" independent variable. To accomplish this, consider equation (4.100)

and write it as

Vo 2
()
m

) 573 Jm (5.10)
", S T,

Note that m  is the mass per unit area of the shell surface and is,
therefore, equal to the shell material density, Pgs multiplied by the

shell thickness, h. Hence the above expression can be written as

v 2
1
(D = — ) (5.11)
By @y T
Ty R eI () -l

This result is expressed in terms of the desired quantity, 71, as well

‘as the density ratio, oo/p and a/h, the ratio of cylinder radius to

s ’

cylinder wall thickness. Equation (5.10) can be employed to write an
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expression for £ as

2 Vi@ 2 ) (&na)Z Vi 2 .
c

£” = (9 ()

(o4
Q o] m

But from equation (4.96)

X a 2 C. 2 2

1 L h 4
(=— = v (E—’) (3‘) m

o o
Consequently
v, 2 c. 2 2
h

2= (D D @ n

*m

(& a
(o]

(5.

(5.

(5.

(5.

All quantities in equation (4.121) for the radiation resistance are

12)

13)

14)

15)

now

represented in terms of the forcing frequency parameter, mn; the shell

geometry parameter, h/a; and the material properties, po/ps, CL/c

and v with Qm/Qo = 1,

o’

The numerical analysis scheme is a pafameter study of the problem

in terms of the previously mentioned parameters:

for  and h/a are

10?2 < q < 100,

and
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The shell material and fluid property parameters to be employed in the
numerical analysis are identical to those employed in the case of
axisymmetric mode shapes and are given in Table 5.1. The details of
the computer program empioyed in the parameter study are given in
Appendix 10.3.3. 1In contrast to the case for axisymmetric mode shaﬁes
the series in equation (4.121) are theoretically infinite series but
for the purposes of unumerical evaluation, summation is terminated as
each series converges to a suitably stable value.

The results of machine computation are shown in Figures 5,5 and
5.6. Figure 5.5 shows the radiation resistance for a cylinder in
contact with air for large values of 1 while Figure 5.6 presents the

same information for a cylinder in contact with water.

2
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6. DISCUSSION OF RESULTS

The results presentéd in Chapter 5 exhibit excellent agreement
with the basic characteristics of previous work on the radiation re-
sistance of finite cylindrical shells (Manning and Maidanik, 1964).
Although the work reviewed in this report is theoretically applicable
to long or mathematically infinite cylindrical shells, Figure 5.4,
which indicates the averaged behavior of Rrad over a wide range of
dimensionless frequency values, shows quite clearly the characteristics
of previously published experimental data with regard to the two peaks
in the low- to middle-frequency values and the asymptotic approach to
the radiation resistance of a flat plate of equal area for large values
of the dimensionless frequency parameter, n. The two peaks are identi-
fied as the ring frequency, wr’ the frequency at which the longitudinal
wave length in the cylinder material is equal to its circumference,
and the critical frequency, wg’ the frequency at which the flexural-
wave speed in a flat plate of equivalent thickness is equal to the
speed of sound in the surrounding acoustic medium, respectively. For
large values of 7, the results as indicated in Figure 5.4 oscillate
between the dotted curve which represents the upper bound and the
dashed curve which represents the asymptotic limit for values of the
radiation resistance of the cylinder vibrating in axisymmetric mode
shapes.

Due to the substantial differences in the shell and acoustic
environment in the two cases--the theoretical work reported herein

applying to an infinite, thin cylindrical shell in contact with an
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unbounded ideal fluid and the experimental work of Manning and
Maidanik (1964) applying to a finite, flanged cylinder in contact with
a reverberant airspace--it is felt.that the results of this work show
good agreement with previous experimental studies. The decaying
oscillation of the radiation resistance as 1 becomesilarge is pérhaps
due to the fact that this study is formulated in terms of an anechoic
acoustic environment instead of a reverberant one. A reverberant
acoustic.environment would have a more pronounced averaging influence
on the motion of the shell than would an anechoic condition which
essentially serves as an energy sink compared to a reverberant environ-
ment which is more aptly described in terms of energy storage.

The results for the case of lobar mode shapes are pointedly less
useful than the results for the axisymmetric mode shapes because the
results are valid in the case of the former only for large values of

the dimensionless frequency, 1.
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7, SUMMARY AND CONCLUSIONS

A mathematical model consisting of simultaneous partial
differential equations, one describing the motion of the shell; the
other, the motion of the acoustic medium, is developed. The descrip-
tive equations are solved subject to a velocity compatibility boundary
condition at the shell-fluid interface and the classic radiation con-
dition at large distances from the surface of the cylindrical shell,
The solution is employed to obtain the total radiated power and the
mean-square surface velocity. The radiation resistance is calculated
from this information in the case of axisymmetric and lobar mode
shapes. The results are obtained in the form of a ratio of dimension-
less series which is evaluated numerically for realistic values of
the dimensionless parameters characterizing the problem. The results
are presented in the form of graphs and tables in Chapter 5.

In summary, it should be noted that the results obtained in this
work are predicated by hypotheses pertaining to both the shell and its
environment. Specifically, the shell is assumed to be a long cylindri-
cal shell constructed from an isotropic elastic material and obeying
thin shell equations of deformation. The equations of motion for the
shell do not include internal mechanical damping effects such as would
be caused by joints and fasteners or hysteresis damping within the
material. Damping occurs only in terms of the effect of the acoustic
medium upon the motion of the shell. The acoustic medium is hypoth-
esized to be an ideal compressible fluid that satisfies the perfect gas
law, that is constituted in such a way as to permit propagation of a
sound wave in an adiabatic fashion, and that has a viscosity of zero.
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Hence energy dissipation in the fluid by both thermal and viscous
means is not.considered.

Considering the differences between the mathematical model
utilized in this work and the environﬁent within which experimental
work on the subject has been done, the results presented in Chapter 5
exhibit good agreement with experimental results in the literature both
in terms of the peak at the critical fréquency and the asymptotic
approach to the radiation resistance of a flat plate of equal area at
large values of the dimensionless frequency parameter. However a
need exists for more extensive experimental study of this problem. A
need also exists for more theoretical work based on general mode shapes
for infinite cylindrical shells and for finite cylindrical shells,
Although it will be much more difficult to handle in a mathematically
rigorous manner, future thepretical work will obviously be of greater
value if the acoustic enviromment is included in terms of a reverberant

condition.
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9. LIST OF SYMBOLS

mean-radius of cylinder

c2 = &/[py(1-1) ]

speed of sound in the acoustic medium

plate stiffness, Eh3/[12(1-v2)]

Young's Modulus

components of force applied to the cylindrical shell
thickness of shell

i® = -1

radial wave number; defined by equation (4.26)
axial wave number; defined by equation (4.33)
integer

mass of shell material per unit of area

lumped mass of the system

integer

modal density of structure

acoustic pressure

ambient pressure in the acoustic medium

applied load on cylinder surface per unit of area
radial coordinate in cylindrical coordinate system
total resistance

radiation resistance

mechanical resistance

spring constant

acceleration spectral density of the structure
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acoustic pressure-spectral density in the medium sur-
rounding the structure

time

T = 2m/w

reverberation time of structure

axial velocity of shell surface
acoustic-medium particle velocity

radial fluid particle velocity

tangential velocity of shell

radial velocity of shell surface

total dissipated power

input éower

radiated power

coordinate in single.degree-of-freedom problem
axial coordinate in cylindrical coordinate system
radiation impedance

dimensionless axial coordinate

B =6

ratio of specific heats (cp/cv)

62 = D/a4mS

damping factor

polar angle in cylindrical coordinate system
resistance ratio

Poisson's ratio

ambient density of the acoustic medium

density of shell material



acoustic velocity potential
frequency of forcing function
ring frequency

critical frequency

natural frequency of single-degree-of-freedom system
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10. APPENDICES

10.1 Response Analysis of a Randomly Excited
Rigid Piston in an Infinite Baffle

10.1.1 Introduction

The problem of a baffled, rigid piston radiating into a semi-
infinite acoustic medium was originally investigated by Rayleigh
(1945). Since Rayleigh's initial report, numerous methods have been
employed in further study of the problem (McLachlan, 1932; King, 1934;
Williams and Labaw, 1945; Pachner, 1951; Guptill, 1953; Quint, 1959;
Mangulis, 1964; Williams, 1964; and Greenspan, 1966). The present work
is concerned with analysis of the problem when the piston is excited
by a random force,.

The problem is examined in terms of a single-degree-of-freedom
vibrational system with retarding forces due to mechanical stiffness,
mechanical damping, inertia, and the effects of the acoustic medium.
Solution of the differential equation of motion permits determination
of the admittance of the system. The mean-square response velocity of
the piston is calculated for a random exciting force of uniform spectral
density. The result is an integral form solution that is evaluated
numerically.

Numerical results are obtained for the general case, for 2ka << 1,
and for 2ka large. When 2ka is large, an analytical result can be
obtained and a comparison of numerical and analytical results gives
good agreement. Numerical results are presented in graphical form and
discussed.
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10.1.2 Analytical Development

Consider a circular piston mounted flush with the surface of an
infinite plane baffle, Figure 10.1. Motion perpendicular to the plane
of the piston is initiated by application of a random force. Resisting
forces tending to retard motion are generated by mechanical damping,
mechanical stiffness and the effects of the acoustic medium. A study
of this motion will be accomplished in terms of the mathematically
equivalent model shown in Figure 10.2, where FF(t) is the forcing
function and FR(t) is the reaction force due to the surrounding
acoustic medium.

Describing the system in terms of the coordinate X gives the

differential equation of motion of the system as

m + R X + SX = F(t) - Fo(t) . (10.1)

The reaction force due to the acoustic medium can be written in terms
of the acoustic or radiation impedance, Zr; then for a simple harmonic
forcing function of amplitude F and circular frequency w, equation

(10.1) becomes

mk + R X + SX = Fe'C - erei“’t (10.2)

t

where Ue @ is the velocity of the piston. The solution of this equa-

. . . iwt R
tion is expressible as Ce where C is a complex constant, i.e.

[F_ZrU]eiwt
X = > : (10.3)
[S—ma™] + i R o
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The velocity of the piston has the form

. iwt

. oot 1w[F_ZrU]e

u =X = Ue = v, 3 (10.4)
[S-mw | +1i R O

so that the complex velocity amplitude can be written as

U = LuF . (10.5)

= ” :
[S-mw ] + 1w[Rm-+Zr]

By writing the radiation impedance, Zr’ in terms of the radiation
resistance, R, and the radiation reactance, X, the velocity amplitude

becomes

U = F , (10.6)

[R_+R] +i[X_ +mo(l - <d—)“;—>‘2>]

2
where w = S/m is the matural frequency of an equivalent spring-mass
system. Consequently the admittance function for the system can be
written as

U _ 1

Y(w =
F [Rm + Rr] + i[xr + mw(l - (a)w—)'z)]
n

(10.7)

Expressions for the radiation resistance and radiation reactance
can be obtained from a number of sources in the literature (Rayleigh,
1945; Kinsler and Frey, 1962; Stephens and Bate, 1966; and Morse, 1948).
The approach employed by Kinsler and Frey (1962) is to solve the wave
equation for a hemispherical point velocity source in an infinite

baffle and obtain an expression for the acoustic pressure generated
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in the surrounding acoustic mediim. If the piston is composed of a
large number of these point sources, then the total pressure at a point
in the acoustic medium is made up of components of pressure with each
component resulting from a point velocity source on the piston face,

If the surface area of the piston which corresponds to an elemental
point source is represented bydA then the desired result can be obtained
by integrating over the surface of the piston., The resulting pressure

at a point (r,0) of the acoustic medium is

ipocokatel(wt"kr) ZJl(kasine)

P = 2r [ ka sin © ]

(10.8)

The coordinate r is the distance between the center of the piston face
and the point of interest while © is the angle between a line segment
joining the center of the piston and the point of interest and the axis
of rotational symmetry of the piston, Figure 10.1l. The ambient density
of the acoustic medium is Pys while <, is the speed of sound in the
mediim, and k = a/co. Furthermore the radius of the piston is a, and
Jl(g) is a Bessel function of the first kind of order one,

The reaction force on the piston will now be determined. The
pressure, p', acting on an element of piston area, dA', due to the

motion of other area elements, dA, is

ipocok Uel(wt;kr)

p' = [/

T da . (10.9)

Hence the total reaction force is obtained by integrating with respect

to dA'
FR(t) = [ ptaa’ . ) (10.10)
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Integration yields an expression for the reaction force which when
yoos . iot . . s e
divided by the piston velocity, Ue” , gives the acoustic or radiation

impedance

2 .
Zr = mp c 2 [Rl(Zka) + 1X1(2ka)] s (10.11)

where

J;1(8)
R (8) =1 -2 E , (10.11a)
Kl(g)
X8 =2 5 5 (10.11b)
3
and
IS
s 22
Kl(g) == J sin“(%t sin@) sineds . (10.11¢)
0

Examine the case of the piston subjected to a random exciting
force; this excitation is a stationary process consisting of ideal

white noise with uniform spectral density, S in the frequency domain.

f)

The spectral density of response velocity will be related to the

spectral density of the forcing function by
S (@ = [Y(@ ] 5.( (10.12)
u £ ’ ’

where Y(w) is the admittance of the piston-acoustic medium-system as
noted in equation (10.7). The mean-square response velocity is ex-

pressible in terms of the spectral density of the response velocity:

<u">= f 5, (@do . (10.13)
0
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‘Hence, by incorporating equationé (10.7) and (10.12) with (10.13),

2 ®© 2 -
<u’'>=5.[ [¥@]|" do ; (10.14)
0
where
2 1
MO v (10. 15)
m T r ERLL - G ]

n

and Rr and Xr are determined from equation (10.11).
For generality and convenience in numerical evaluation of the

integral in (10.14), the following dimensionless parameters are in-

troduced:
co m w
)“c=wa 2 - 3 apd  q = =
n poa n

Utilizing these quantities in equation (10.14), an expression for the

mean-square response velocity can be written as

o)) 2
<u > q dq
= { R (10.16)
St 0 qtC,q24C, 40K, (2 >+c 22q>+c 3, & >+c “q>
5 1 2 1 61
m W
n
where
Kc 2
C1=[(n}\_+2§) —2] b
m
C2 =1,
}‘3 1
C3=[“iu:(q-'c'l')] b
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2}\32

_ X c 1
¢ =7 &2 =PI
m q
e e
C. = -[2n == (5w =— + 20)q ] ,
> 0
and
22
2 ¢
Co = [ —5 ]
by
m
For the special case where ka = 2::& << 1 , the expressions for

c
Rr and Xr simplify and equation (10.16) becomes:

2
< u2 > _ 4}‘m}\c @ qqu 1
s— =7 | % i ) (10.17)
f T (0] q+D1q +D2q +D3
nw
n
where
861 256ki 64Amkz 4xix§
D, = + + +
Z J
1 s 9;[2 3:r2 B
16623222 ean2? saA?
D = [ m ¢ _ mc - m C]
2 2 2 2 ’
7 3x 14
and
a2
D - m c
3 s
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Likewise when ka = %i is large, equation (10.16) simplifies and

c
2 @ y2
<u’ > d
—s— = —— ; (10.18)
f 4] qg + E,q9q +E
5 1 2
m W
n
where
lc 2 ki
By = [+ 20° + 22 - D],
m m
and

lc 2
E2 = [2('}\_—’) -1 ]
m

Equation (10.18) is evaluated analytically (Bierens de Haan, 1838)

with the following result:

2
SuU > T . . (10.19)
S ,
£ N 2
c 2 c
miwn 2 | (x = + 202 + 42 T - 1)

10.1.3 Discussion of Results

Equations (10.16), (10.17), and (10.18) for the dimensionless
mean-square response velocity of the piston were evaluated numerically
by application of Simpson's rule, The behavior of the integrands in
these equations as a function of q is illustrated in Figures 10,3,
10.4, 10.5 and 10.6. The monotonic decreasing character of these

quantities as q becomes large allows the use of a large finite upper
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limit in the numerical evaluation process. The validity of this
approach was verified in the case of equation (10.18) by use of an
exact expression for the integral. A comparison of results by the two
methods involves differences of no more than 1/2 of 1 percent.

In Figure 10.3 the admittance function of the system as described
by equation (10.16) is shown for fixed kc and ¢ as hm is varied; the
effects of the acoustic medium are aptly illustrated here since in the
limit as km -, Rc —~ 0, the acoustic medium becomes a vacuum. Figure
10.4 shows the variation of the admittance for fixed RC and km as ¢ is
varied. Increased damping simply reduces and shifts the resonance peak
as with a simple damped spring-mass system. Figure 10.5 shows the
admittance function for equation (10.17) for fixed Kc and € as Rm is
varied; Figure 10.6 shows the admittance function for equation (10.18)
subject to the same conditions on X, £, and A

Figure 10.7 depicts the dimensionless mean-square response
velocity (equation 10.16) as a function of }m for various fixed values
of lc and £. It should be noted that these curves approach a limiting
value of velocity as )m increases. 1In fact, the asymptotic value of
velocity approached is the velocity of the piston when in contact with
a vacuum, For the case of the piston-vacuum system, the mean-square

velocity attained is a function of { alone or

2
<u > i
——?i;—— = ZZ. . (10. 20)
2
m W
ja}

For §{ = 0.01, 0.02, 0.04, and 0.08, the limiting value of dimensionless
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mean-square velocity becomes 78.54, 39.27, 19.63, and 9.817 respective-
ly. Figures 10.7 - 10.13 accurately exhibit this behavior. Figures
10,7 - 10.9 are graphical presentations of equation (10,.16). Figures
10.10 and 10.11 are graphical forms of equation (10.17), and Figures
10.12 and 10.13 are graphical forms of equation (10.18). Figure 10.12
should be noted, in particular, since only in the region below the
dashed line do the numerical and analytical results agree. This fact
rather firmly establishes the respective values of kc and lm which

allow valid usage of equation (10.18); i.e.

A o> | 2. (10. 21)

10.1.4 Conclusions

The problem of a baffled, rigid piston radiating into a semi-
infinite acoustic medium is examined in terms of a single-degree-of-
freedom vibrational system. Solution of the differential equation of
motion permits determination of the admittance of the system. The
mean~square response velocity of the piston is calculated for a random
exciting force of uniform spectral density. The result is an integral
form solution that is evaluated numerically.

The results indicate the general ranges of usefulness of the two
asymptotic results, equations (10.17) and (10.18), compared with the
general results, equation (10.16). Equation (10.19) is obviously the
most useful result, but it is restricted to small values of kc and km
being related to kc by equation (10.21). Neither equation (10.16) nor

(10.17) can be handled conveniently without the use of a digital
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FIGURE 10.1 RIGID PISTON IN INFINITE BAFFLE
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computer. Hence the results, equation (10.16) and (10.17), are not as

useful as would be a closed-form solution.

10.2 Radiation Condition Verification
The general solution of the ordinary differential equation in the
radial coordinate of the separated acoustic wave equation in cylindri-

cal coordinates is

R(r) = C(l)Hél)(krr) + C(Z)Héz)(krr) 5 (10.22)

where Hél) and Héz) are Hankel functions of the first and second kind
of order one respectively for the case of a real separation constant,
k >0

T

The radiation condition written in terms of R(r) is

lim Jr [R'(r) - ik R(xr)] =0 (10.23)
r—-0o r

for kr > 0. The importance of the radiation condition in an oscilla-
tion problem generated by sources in the finite domain is that the
radiation condition is then sufficient to insure a unique solution. 1In
other words, the radiation condition guarantees that sources are, in
fact, sources--not sinks. As a result, the only admissible solution to
the radial part of the separated wave equation in cylindrical coordi-
nates is an outgoing wave front.

Equation (10.22) is substituted into equation (10.23) and
asymptotic expressions for the Hankel functions and their derivatives

are employed as follows:
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@b r
H (k_r) e = e (10.24)
o r nkrr J:?
and
ik T-2 (2 -ik
-1 - - r
12 (kv = ﬁkz e TOH A T (10. 25)
o] T <L \f;ﬂ
Further
ik r ik r-%
d—dr—Hél)(krr) A (—— (10. 26)
(JO
and
d (2 2) -ikrr -ikrr.-%
— H (k.t) = A e ( ) . (10.27)
dr "o r (Jrf)ﬁ

Substitution gives that

ik_r
lim [r [R'(x) - ikrR(r)] = lim [C(l)A(l)e r

r—00 00
ik r- % -ik r -ik r-%
r , (2),(2) r T .
X (——_F—__ - lkr) + C*7A e (———1?——— - 1kr)] .
Rewriting and simplifying produces
ik r
. ' : - 14 ,d T r
lim Jr [R'(Y) _1krR(r)] = lim [C*"7AY e
r—00 e
-ik r -2ik r-%
-k 1
x (B +cPaPe T L 57, (10. 28)

The limit of a sum is equal to the sum of the limits provided that the
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separate limits exist. The limit of the first term of equation (10.28)
indeed exists and is equal to zero in the limit of large r but the
second term does not have a limit. Hence in order for the radiation
condition to be fulfilled, C(z) must equal zero. This requirement

eliminates the second kind of Hankel function from equation (10.22),

and the result is
R(xr) = C(l)Hél)(krr) (10.29)

for kr real and positive.
Proceeding in a similar manner for kr = ikr >0 , the analogue

to equation (10.22) is
R(r) = B(l)H(gl) (iErr) + B(Z)H(()z)(il—crr) s (10.30)

and the radiation condition is

lim .J?—[R'(r) - ErR(r)] =0 . (10.31)
r

—00

Substituting equation (10.30) into equation (10.31) and utilizing

asymptotic expressions for the Hankel functions yields

-k r
lim (T [R'(x) -R_R(r)] = lim WA T

r—-Q0 r—0o
e h L a2,® 5
X (—2 r " ']-:_-) + B A e ( ?)] . (10.32)

It can be shown in this case that B(z) must equal zero in order for the

limit of the sum to exist and be zero; hence equation (10.30) becomes

R(r) = B(l)Hél)(ikrr) for Er >0 . (10.33)
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Both equations (10.29) and (10.33) are the solutions to the radial
part of the separated wave equation employed in the previous analytical

developments of Chapter 4.

10.3 Computer Programs

This section presents the computer programs employed. to evaluate
the radiation resistance as given in equations (4.73) and (4.121).

The program contained in section 10.3.1 is employed to evaluate
the radiation resistance for axisymmetric mode shapes. Input data
about shell material and geometry as well as fluid properties are
employed to calculate the individual terms of the series. Summation is
terminated at the point such that n is greater than n/(na/L) or upon
convergence of the series to the degree that the absolute value of the
last term divided by the sum of all previously calculated terms is
less than or equal to 0.1 of one percent.

Section 10.3.2 presents a program which is employed to compute an
average radiation resistance. The program of section 10.3.1 is utilized
as a function subprogram in a Simpson's Rule integration scheme which
averages the radiation resistance for axisymmetric mode shapes.

The program of section 10.3.3 is utilized to evaluate the radia-
tion resistance for lobar mode shapes. 1Input data concerning shell
material and geometry as well as fluid properties are employed to
calculate the individual terms of the series. Summation is terminated
at the point such that the absolute value of the last term divided by
the sum of all previously calculated terms is less than or equal to 0.1

of one percent.
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10.3.1 Program to Compute Radiation Resistance for AxiszgggEEESHMQQF
Shapes - T T T

1 FORMAT('l',19X, 'DIMENSIONLESS RADIATION RESISTANCE')
2 FORMAT(' ',23X, 'FOR AN AXISYMMETRIC SHELL')
3 FORMAT(' ',31X, 'MODE SHAPE')
4 FORMAT('O', 23X, 'SHELL MAT L -7075-ALUMINUM')
40 FORMAT(' ',5X, 'DENSITY RATIO = ',ELl.4,10X, ‘SPEED RATIO = ‘,Ell.4)
5 FORMAT('0',9%,'A/L = ',E11.4,20X, 'H/L = ',E11.4)
6 FORMAT('0',14X, 'ETA',05X, 'RADIATION RESISTANCE',4X, 'RDB',11X, 'N')
7 FORMAT('0',10X,E11.4,5%X,E11.4,5X,E1L.4,5%,14)
X(A,N, B) =A%*2_(3.1415927*N*B) **
CHIN(A, B,N,C,D,E) =A*B* (((3.1415927%N) *%2%C#D)*#2/12. +(1. -E**2))
WRITE(3,1)
WRITE(3,2)
WRITE(3, 3)
PI=3.1415927

SHELL MATERIAL AND FLUID PROPERTY PARAMETERS
SHELL MATERIAL - 7075 ALUMINUM

[eNeNeNe]

E=10.4E+06

RHOS=0.101

PRATO0=0. 333

DRATO=4. 4276E-05/RHOS
SRATO=(32.1739%E) / (RHOS* (L. ~-PRATO**2) % (1117.) **2)
WRITE(3,4)

WRITE(3,40) DRATO,SRATO

(@]

GEOMETRY PARAMETERS

HOL=. 1E-04

AOL=.1E-01

WRITE(3,5) AOL,HOL

WRITE(3,6)

DO 50 K=1,9

DO 50 J=0,9

DO 50 I=0,4

ETA=. 100%K+,01%J+,002*T

TOPSUM=0.0

BOTSUM=0.0

N=1
10 CONTINUE

IF ((N. GT.ETA/ (PI*AOL)) .AND. (N.EQ.1)) GO TO 25

IF(N.EQ.1) GO TO 12

IF (ABS (TOPTER/TOPSUM) . LE.0.0001) GO TO 15
12 CONTINUE

XR=SQRT (X (ETA,N,A0L))

IF (XR.GE.50.) GO -TO 13

CALL BESJ(XR,0,B0,0.0005,IEO)

CALL BESJ(XR,1,B1,0.0005,IEL)
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GO TO 14

13 CONTINUE
BO=SQRT(2./(PI*XR))*COS (XR-P1/4.)
B1=SQRT(2./(PI*XR))*COS (XR-(3.*PI/4.))

14 CONTINUE
QRATO=1. /N
FRATO=1. / (1. +(DRATO*AOL*BO) / (HOL*XR*B1))
FRATO=FRATO*QRATO
ZET=CHIN (FRATO, SRATO, N, HOL,AOL, PRATO)
TOPTER=(FRATO/ (ETA%%2_ZET) ) %% 2% (1, / (XR**3%B1%%2))
TOPSUM=TOPSUM+TOPTER

15 CONTINUE
IF(N.EQ.1) GO TO 17
IF (ABS (BOTTER/BOTSUM) . LE.0.0001) GO TO 20

17 CONTINUE
IF(XR.LT.0.5) GO TO 18
CALL BESY(XR,1,BYl,IEYL)

GO TO 19

18 CONTINUE
BYl=-2./(PI*XR)

19 CONTINUE
BOTTER=(FRATO/ (ETA**2.ZET) ) %#2#% (1. +BY1#%2/Bl**2)
BOTSUM=BOTSUM+BOTTER
N=N+2
IF (N. GT.ETA/(PI*AOL)) GO TO 20
GO TO 10

20 CONTINUE
RRAD=4. *ETA*% 2% (TOPSUM/ BOTSUM)
RDB=10.*ALOG10 (RRAD/100.)

GO TO 30

25 CONTINUE
RRAD=0
RDB=-. 1E30
WRITE(3,7) ETA,RRAD,RDB,N

30 CONTINUE
WRITE(3,7)- ETA,RRAD,RDB,N

50 CONTINUE
STOP
END

10.3.2 Program to Average Radiation Resistance for Axisymmetric Mode
Shapes '

COMMON AOL, HOL, PI, DRATO, SRATO, PRATO

EXTERNAL F

DIMENSION DATA(7,8)

FORMAT('1',15%, 'DIMENSIONLESS AVERAGE RADIATION RESISTANCE')
FORMAT(' ',23X, 'FOR AN AXISYMMETRIC SHELL')

FORMAT(' ',31X, 'MODE SHAPE')

FORMAT('0', 23X, 'SHELL MAT L -7075-ALUMINUM')

LW
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40 FORMAT(' ',5X, 'DENSITY RATIO = ',Ell.4,10X; 'SPEED RATIO = ',Ell.4)
5 FORMAT('0',9%,'A/L = ',E11.4,20X, 'H/L = ',E11,4)
6 FORMAT('0',10X, 'A',14X, 'DEL',6 13X, 'RPA', 12X, 'RPADB',9X, 'N', 6X, 'TER’
%)
60 FORMAT(8F10.4)
7 FORMAT('0',05X,E11.4,05X,EL1,4,05X,E11.4,05X,E1L.4,04X,14,04X,14)
WRITE(3,1)
WRITE(3,2)
WRITE(3,3)
PI=3. 1415927

SHELL MATERIAL AND FLUID PROPERTY PARAMETERS
SHELL MATERIAL - 7075 ALUMINUM

[eNeNeNe!

E=10.4E+C6

RHOS=0.101

PRATO=0. 333

DRATO=3. 605E-02/RHOS
SRATO=(32.1739*E) / (RHOS* (1. ~PRATO**2) * (4859, ) %*2)
WRITE(3,4)

WRITE(3,40) DRATO,SRATO

(@]

GEOMETRY PARAMETERS

HOL=. 1E-04
AOL=.1E-01
WRITE(3,5) AOL,HOL
WRITE(3, 6)
A=PI*AOQL+.0000001
READ(1, 60) ((DATA(I,J),J=1,8),1=1,7)
DO 50 1=1,7
DO 50 J=1,8
B=DATA(I,J)
CALL INTRL(F,A,B,0.001,12,SII,S,N,IER)
DEL=B-A
RPA=S/DEL
RPADB=10.*ALOG10 (RPA/100.)
WRITE(3,7) A,DEL,RPA,RPADB,N,IER
A=B
50 CONTINUE
STOP
END

SUBROUTINE INTRL(F,A,B,DEL,IMAX,SII,S,N,IER)
SII=0.0

$=0.0

N=0

BA=B-A

IF (BA) 20,19,20
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19

20
22

23
24

25

26

27
28

29
30

10

12

IER=1

RETURN

IF(DEL) 22,22,23
IFR=2

RETURN

IF (IMAX-1) 24,24,25
IER=3

RETURN

X=BA/2. +A

NHALF=1
SUMK=F (X) *BA*2. /3.
S=SUMK+(F (A) +F (B) ) *BA/6.
DO 28 I=2,IMAX

SII=S
S=(S-SUMK/2.) /2.
NHALF =NHALF*2
ANHLF=NHALF
FRSTX=A+(BA/ANHLF) /2.
SUMK =F (FRSTX)
XK=FRSTX
KLAST=NHALF .1
FINC=BA/ANHLF

DO 26 K=1,KLAST
XK=XK+FINC

SUMK =SUMK+F (XK)
SUMK=SUMK*2. BBA/ (3. ANHLF)
S=S+SUMK

IF (ABS(S-SII) -ABS(DEL*S)) 29,28,28
CONTINUE

IER=4

GO TO 30

IER=0

N=2*NHALF

RETURN

END

FUNCTION F (XTA)

COMMON AOL, HOL,PI,DRATO, SRATO, PRATO

X(A,N, B) =A*%2.(3.1415927*N*B) %%2

CHIN(A, B,N,C, D, E) =A*B¥* (( (3. 1415927#N) *%2%C*D)**2/12. +(1. -E**2))
TOPSUM=0.0

BOTSUM=0.0

N=1

CONTINUE

IF ((N. GT.XTA/ (PI*AOL)) .AND. (N.EQ.1)) GO TO 25
IF(N.EQ.1) GO TO 12

1F (ABS (TOPTER/TOPSUM) . LE.0.0001) GO TO 15
CONTINUE

XR=SQRT (X (XTA,N,AQL))

IF (XR.GE.50.) GO TO 13
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CALL BESJ(XR,0.B0,0.0005,IE0)
CALL BESJ(XR,1,B1,0.0005,IEL)
GO TO 14

13 CONTINUE
BO=SQRT (2. / (PI*XR) ) *COS (XR-PL/4.)
B1=SQRT(2./(PI*XR))*COS(XR-(3.%*PI/4.))

14 CONTINUE
QRATO=1. /N
FRATO=1. /(1. +(DRATO*AOL*BO) / (HOL*XR*B1))
FRATO=FRATO*QRATO
ZET=CHIN (FRATO, SRATO, N, HOL, AOL, PRATO)
TOPTER=(FRATO/ (XTA**2.2ET) ) %*2% (1. / (XR**3%Bl**2))
TOPSUM=TOPSUM+TOPTER

15 CONTINUE
IF(N.EQ.1) GO TO 17
IF (ABS (BOTTER/BOTSUM) . LE.0.0001) GO TO 20

17 CONTINUE
IF (XR.LT.0.5) GO TO 18
CALL BESY(XR,1,BY1,IEYl)

GO TO 19

18 CONTINUE
BYl=_2./(PI*XR)

18 CONTINUE
BOTTER=(FRATO/ (XTA*%2_ZET) ) #%2% (1, +BY1%*2/B1#%2)
BOTSUM=BOTSUM+BOTTER
N=N+2
IF(N. GT.XTA/ (PI*¥AOL)) GO TO 20
GO TO 10

20 CONTINUE
RRAD=4, *XTA%** 2% (TOPSUM/BOTSUM)

F=RRAD
GO TO 30

25 CONTINUE
RRAD=0.0
F=RRAD

30 CONTINUE
RETURN
END

10.3.3 Program to Compute Radiation Resistance for Lobar Mode _S_a_h_a~p49.7§

FORMAT('1',19X, 'DIMENSIONLESS RADIATION RESISTANCE')

FORMAT(' ',21X, 'FOR A SHELL EXHIBITING A LOBAR')

FORMAT(' ',31X, 'MODE SHAPE')

FORMAT('0', 23X, 'SHELL MAT L .7075-ALUMINUM'")

FORMAT(' ',5X, 'DENSITY RATIO = ',Ell.4,10X, 'SPEED RATIO + ',E11.4)
FORMAT('0',27X, '"H/A = ',E11.4)

FORMAT('0',14X, 'ETA',05X, 'RADIATION RESISTANCE' 64X, 'RDB',11X, 'M")
FORMAT('0',10X,E11.4,5X,E11.4,5X,E11.4,5X,14)

CHIM(A, B,M) =(1. /12.) %A% (B¥*%*2) *M**4

~
NOoOUMOM~WLWN
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[eNeNeN@]

@]

10

100

11

12

13

14

WRITE(3,1)
WRITE(3,2)
WRITE (3, 3)
PI=3,1415927

SHELL MATERIAL AND FLUID PROPERTY PARAMETERS
SHELL MATERIAL - 7075-ALUMINUM

E=10.4E+06

RHOS=0.101

PRATO=0. 333

DRATO=3. 605E-02/RHOS
SRATO=(32.1739*E) / (RHOS* (1. -PRATO**%2) * (4859, ) **2)
WRITE(3,4)

WRITE(3,40) DRATO,SRATO

GEOMETRY PARAMETERS

DO 50 I=1,2

DO 50 J=1,5

HOA=(.001E-01) *J%10%%1

WRITE(3,5) HOA

WRITE(3, 6)

DO 50 K=0,100

DO 50 L=0,1

ETA=50,0+1,0%K+0.5%L

TOPSUM=0.0

BOTSUM=0.0

M=1

CONTINUE

IF(M.LE.2) GO TO 100

MFAC=MFAC* (M-1)

GO TO 11

CONTINUE

MFAC=1

CONTINUE

IF(M.EQ.1) GO TO 12

IF (ABS (TOPTER/TOPSUM) . LE.0.0001) GO TO 15
CONTINUE

IF(ETA.GE.50.) GO TO 13

CALL BESJ(ETA,M, B0,0.0005,1EO)

MADD=M+1

CALL BESJ(ETA,MADD,B1,0.0005,IEl)

GO TO 14

CONTINUE

BO=SQRT (2. /(PI*ETA))*COS (ETA-PI/4. -M*P1/2.)
MADD=M+1
B1=SQRT(2./(PI*ETA))*COS (ETA-PI/4. -MADD*P1/2.)
CONTINUE

FRATO=1. /(1. - (DRATO* (1. /HOA) * (BO/ (M¥BO-ETA*B1))))
ZET=CHIM(SRATO, HOA,M) *FRATO
TOPTER=(FRATO/ (ZET-ETA**%2) ) %%2% (1. / (M*BO~ETA*BL) ) **2
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TOPSUM=TOPSUM+TOPTER
15 CONTINUE
IF(M.EQ.1) GO TO 17
IF (ABS (BOTTER/BOTSUM) . LE.0.0001) GO TO 20
17 CONTINUE
IF ((M.EQ.Q) .AND. (ETA.LT.0.5)) GO TO 200
IF (ETA.LT.0.5) GO TO 18
IF (ETA.GE.50.) GO TO 300 :
CALL BESY(ETA,M, BYO,IEYO)
CALL BESY(ETA,MADD,BYl,IEY1)
GO TO 19
18 CONTINUE
BYD=( (-2, **MAMFAC) /PI)* (1. /ETA**M)
BY1=((-2.**MADD*MFAC*M) /PI)* (1. /ETA%**MADD)
GO TO 19
200 CONTINUE
BYO=(2. /PI)*ALOG10 (ETA)
BYl=.2./(PI*ETA)
GO TO 19
300 CONTINUE
BYO=SQRT (2. /(PI*ETA)) *SIN(ETA-PI/4. -M*PI/2.)
BY1=SQRT(2./(PI*ETA) ) *SIN(ETA-PI1/4. -MADD*PL/2.)
19 CONTINUE
BOTTER=(FRATO/ (ZET-ETA%%2) ) #%2% (1. +(M*BYO-ETA*BY1) **2/ (M* BO-ETA* Bl
*) %% 2)
BOTSUM=BOTSUM+BOTTER
M=M+2
GO TO 10
20 CONTINUE
RRAD=8. *ETA* (TOPSUM/ BOTSUM)
RDB=10. *ALOG10 (RRAD/100.)
WRITE(3,7) ETA,RRAD,RDB,M
50 CONTINUE
STOP
END
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